pragmarc_20240810.0.0_fc017aa4/src/pragmarc-unbounded_numbers-rationals.adb

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
-- PragmAda Reusable Component (PragmARC)
-- Copyright (C) 2021 by PragmAda Software Engineering.  All rights reserved.
-- Released under the terms of the BSD 3-Clause license; see https://opensource.org/licenses
-- **************************************************************************
--
-- History:
-- 2021 May 01     J. Carter          V2.3--Adhere to coding standard
-- 2021 Feb 01     J. Carter          V2.2--Removed Sqrt
-- 2021 Jan 01     J. Carter          V2.1--Further Sqrt improvement
-- 2020 Nov 01     J. Carter          V2.0--Initial Ada-12 version
----------------------------------------------------------------------------
-- 2019 Aug 15     J. Carter          V1.2--Apply Base to non-fractional images; improve Sqrt convergence
-- 2017 Apr 15     J. Carter          V1.1--Removed GCD and LCM (now in Unbounded_Integers) and added Sqrt
-- 2014 Apr 01     J. Carter          V1.0--Initial release
--
with Ada.Strings.Fixed;
with Ada.Strings.Unbounded;

package body PragmARC.Unbounded_Numbers.Rationals is
   procedure Simplify (Value : in out Rational);
   -- Changes Value to have the smallest (absolute) values that represent the same rational number
   -- 2/4 becomes 1/2

   function Compose (Numerator : in Integers.Unbounded_Integer; Denominator : in Integers.Unbounded_Integer) return Rational is
      Result : Rational := (Numerator => Numerator, Denominator => Denominator);
   begin -- Compose
      if Numerator < UI0 then
         if Denominator < UI0 then
            Result := (Numerator => abs Numerator, Denominator => abs Denominator);
         end if;
         -- Else signs are OK
      elsif Denominator < UI0 then
         if Numerator > UI0 then
            Result := (Numerator => -Numerator, Denominator => abs Denominator);
         end if;
         -- Else Numerator is zero and Simplify will adjust the denominator
      else
         null; -- Signs are OK
      end if;

      Simplify (Value => Result);

      return Result;
   end Compose;

   procedure Decompose
      (Value : in Rational; Numerator : out Integers.Unbounded_Integer; Denominator : out Integers.Unbounded_Integer)
   is
      -- Empty declarative part
   begin -- Decompose
      Numerator := Value.Numerator;
      Denominator := Value.Denominator;
   end Decompose;

   function "+" (Right : in Rational) return Rational is
      (Right);

   function "-" (Right : in Rational) return Rational is
      (Numerator => -Right.Numerator, Denominator => Right.Denominator);

   function "abs" (Right : in Rational) return Rational is
      (Numerator => abs Right.Numerator, Denominator => Right.Denominator);

   function "+" (Left : in Rational; Right : in Rational) return Rational is
      M  : Unbounded_Integer;
      LN : Unbounded_Integer;
      RN : Unbounded_Integer;
   begin -- "+"
      if Left.Denominator = Right.Denominator then
         return Compose (Left.Numerator + Right.Numerator, Left.Denominator);
      end if;

      if Left.Denominator = UI1 then
         return Compose (Left.Numerator * Right.Denominator + Right.Numerator, Right.Denominator);
      end if;

      if Right.Denominator = UI1 then
         return Compose (Left.Numerator + Right.Numerator * Left.Denominator, Left.Denominator);
      end if;

      M := LCM (abs Left.Denominator, abs Right.Denominator);

      if M = Left.Denominator then
         LN := Left.Numerator;
      else
         LN := Left.Numerator * M / Left.Denominator;
      end if;

      if M = Right.Denominator then
         RN := Right.Numerator;
      else
         RN := Right.Numerator * M / Right.Denominator;
      end if;

      return Compose (LN + RN, M);
   end "+";

   function "-" (Left : in Rational; Right : in Rational) return Rational is
     (Left + (-Right) );

   function "*" (Left : in Rational; Right : in Rational) return Rational is
      (Compose (Left.Numerator * Right.Numerator, Left.Denominator * Right.Denominator) );

   function "/" (Left : in Rational; Right : in Rational) return Rational is
      -- Empty declarative part
   begin -- "/"
      if Right = Zero then
         raise Constraint_Error with "Division by zero";
      end if;

      if Right < Zero then
         return Compose (Left.Numerator * (-Right.Denominator), Left.Denominator * (abs Right.Numerator) );
      end if;

      return Compose (Left.Numerator * Right.Denominator, Left.Denominator * Right.Numerator);
   end "/";

   function "**" (Left : in Rational; Right : in Integer) return Rational is
      Result : Rational := Left;
      Work   : Rational := Left;
   begin -- "**"`
      if Right = 0 then
         return One;
      end if;

      if Right = 1 then
         return Left;
      end if;

      if Left = Zero then
         return Zero;
      end if;

      if Right < 0 then
         return One / Left ** (abs Right);
      end if;

      Calculate : declare -- This is O(log Right)
         Power : Natural := Right - 1;
      begin -- Calculate
         Multiply : loop
            exit Multiply when Power = 0;

            if Power rem 2 = 0 then -- X ** (2 * P) = (X ** 2) ** P
               Work := Work * Work;
               Power := Power / 2;
            else
               Result := Work * Result;
               Power := Power - 1;
            end if;
         end loop Multiply;
      end Calculate;

      return Result;
   end "**";

   function ">"  (Left : in Rational; Right : in Rational) return Boolean is
      M : Unbounded_Integer;
   begin -- ">"
      if Left.Denominator = Right.Denominator then
         return Left.Numerator > Right.Numerator;
      end if;

      if Left.Numerator < UI0 then
         if Right.Numerator >= UI0 then
            return False;
         end if;
      elsif Right.Numerator < UI0 then
         return True;
      else
         null;
      end if;

       -- Signs are the same

      M := LCM (abs Left.Denominator, abs Right.Denominator);

      return Unbounded_Integer'(Left.Numerator * M / Left.Denominator) > Right.Numerator * M / Right.Denominator;
   end ">";

   function "<"  (Left : in Rational; Right : in Rational) return Boolean is
      (Right > Left);

   function ">=" (Left : in Rational; Right : in Rational) return Boolean is
      (not (Right > Left) );

   function "<=" (Left : in Rational; Right : in Rational) return Boolean is
      (not (Left > Right) );

   function Image
      (Value : in Rational; As_Fraction : in Boolean := False; Base : in Base_Number := 10; Decorated : in Boolean := False)
   return String is
      Radix    : constant Unbounded_Integer    := To_Unbounded_Integer (Integer (Base) );
      Int_Base : constant Integers.Base_Number := Integers.Base_Number (Base);

      Work   : Unbounded_Integer := abs Value.Numerator;
      Q      : Unbounded_Integer;
      Result : Ada.Strings.Unbounded.Unbounded_String;

      use Ada.Strings.Unbounded;
   begin -- Image
      if As_Fraction then
         return Image (Value.Numerator, Int_Base, Decorated) & '/' & Image (Value.Denominator, Int_Base, Decorated);
      end if;

      if Value.Numerator < UI0 then
         Append (Source => Result, New_Item => '-');
      end if;

      if Decorated then
         Append (Source => Result, New_Item => Image (Radix) & '#');
      end if;

      Q := Work / Value.Denominator;

      Append (Source => Result, New_Item => Image (Q, Base => Int_Base) & '.');

      Work := Work - Q * Value.Denominator;

      if Work = UI0 then
         Append (Source => Result, New_Item => '0');

         if Decorated then
            Append (Source => Result, New_Item => '#');
         end if;

         return To_String (Result);
      end if;

      Zeros : loop
         exit Zeros when Q /= UI0;

         Work := Radix * Work;
         Q := Work / Value.Denominator;
         Append (Source => Result, New_Item => Image (Q, Base => Int_Base) );
         Work := Work - Q * Value.Denominator;
      end loop Zeros;

      Count : for I in 1 .. 1_000 loop
         exit Count when Work = UI0;

         Work := Radix * Work;
         Q := Work / Value.Denominator;
         Append (Source => Result, New_Item => Image (Q, Base => Int_Base) );
         Work := Work - Q * Value.Denominator;
      end loop Count;

      if Decorated then
         Append (Source => Result, New_Item => '#');
      end if;

      return To_String (Result);
   end Image;

   function Value (Image : in String) return Rational is
      Slash : constant Natural := Ada.Strings.Fixed.Index (Image, "/");
      Dot   : constant Natural := Ada.Strings.Fixed.Index (Image, ".");
      Hash  : constant Natural := Ada.Strings.Fixed.Index (Image, "#");
   begin -- Value
      if Slash > 0 then
         return Compose (Value (Image (Image'First .. Slash - 1) ), Value (Image (Slash + 1 .. Image'Last) ) );
      end if;

      if Dot = 0 then
         return (Numerator => Value (Image), Denominator => UI1);
      end if;

      if Dot = Image'Last then
         return (Numerator => Value (Image (Image'First .. Image'Last - 1) ), Denominator => UI1);
      end if;

      if Hash = 0 then
         return Compose (Value (Image (Image'First .. Dot - 1) & Image (Dot + 1 .. Image'Last) ),
                         Value ('1' & (1 .. Image'Last - Dot => '0') ) );
      end if;

      return Compose (Value (Image (Image'First .. Dot - 1) & Image (Dot + 1 .. Image'Last) ),
                      Value (Image (Image'First .. Hash) & '1' & (1 .. Image'Last - Dot - 1 => '0') & '#') );
   end Value;

   procedure Simplify (Value : in out Rational) is
      D : Unbounded_Integer;
   begin -- Simplify
      if Value.Numerator = UI0 then
         if Value.Denominator = UI0 then
            raise Constraint_Error with "Division by zero";
         end if;

         Value := Zero;

         return;
      end if;

      D := GCD (Value.Numerator, Value.Denominator);

      Value := (Numerator => Value.Numerator / D, Denominator => Value.Denominator / D);
   end Simplify;
end PragmARC.Unbounded_Numbers.Rationals;