bbs_simcpu_0.1.0_73ecd6e3/src/m68000/bbs-sim_cpu-m68000.adb

   1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
--
--  Author: Brent Seidel
--  Date: 31-Jul-2024
--
--  This file is part of SimCPU.
--  SimCPU is free software: you can redistribute it and/or modify it
--  under the terms of the GNU General Public License as published by the
--  Free Software Foundation, either version 3 of the License, or (at your
--  option) any later version.
--
--  SimCPU is distributed in the hope that it will be useful, but
--  WITHOUT ANY WARRANTY; without even the implied warranty of
--  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General
--  Public License for more details.
--
--  You should have received a copy of the GNU General Public License along
--  with SimCPU. If not, see <https://www.gnu.org/licenses/>.--
--
with Ada.Unchecked_Conversion;
with Ada.Text_IO;
with Ada.Text_IO.Unbounded_IO;
with Ada.Strings.Unbounded;
with Ada.Exceptions;
with BBS.Sim_CPU.m68000.line_0;
with BBS.Sim_CPU.m68000.line_1;
with BBS.Sim_CPU.m68000.line_2;
with BBS.Sim_CPU.m68000.line_3;
with BBS.Sim_CPU.m68000.line_4;
with BBS.Sim_CPU.m68000.line_5;
with BBS.Sim_CPU.m68000.line_6;
with BBS.Sim_CPU.m68000.line_7;
with BBS.Sim_CPU.m68000.line_8;
with BBS.Sim_CPU.m68000.line_9;
--with BBS.Sim_CPU.m68000.line_a;
with BBS.Sim_CPU.m68000.line_b;
with BBS.Sim_CPU.m68000.line_c;
with BBS.Sim_CPU.m68000.line_d;
with BBS.Sim_CPU.m68000.line_e;
--with BBS.Sim_CPU.m68000.line_f;
with BBS.Sim_CPU.m68000.exceptions;
package body BBS.Sim_CPU.m68000 is
   --
   function psw_to_word is new Ada.Unchecked_Conversion(source => status_word,
                                                           target => word);
   --
   --  ----------------------------------------------------------------------
   --  Simulator control
   --
   --  Called first to initialize the simulator
   --
   overriding
   procedure init(self : in out m68000) is
   begin
      self.d0 := 0;
      self.d1 := 0;
      self.d2 := 0;
      self.d3 := 0;
      self.d4 := 0;
      self.d5 := 0;
      self.d6 := 0;
      self.d7 := 0;
      self.a0 := 0;
      self.a1 := 0;
      self.a2 := 0;
      self.a3 := 0;
      self.a4 := 0;
      self.a5 := 0;
      self.a6 := 0;
      self.usp := 0;
      self.ssp := 0;
      self.pc := 0;
      self.psw.carry    := False;
      self.psw.overflow := False;
      self.psw.zero     := False;
      self.psw.negative := False;
      self.psw.extend   := False;
      self.psw.unused0  := False;
      self.psw.unused1  := False;
      self.psw.unused2  := False;
      self.psw.mask     := 7;
      self.psw.unused3  := False;
      self.psw.unused4  := False;
      self.psw.super    := True;
      self.psw.trace0   := False;
      self.psw.trace1   := False;
      self.cpu_halt := False;
   end;
   --
   --  Called once when Start/Stop switch is moved to start position
   --
   overriding
   procedure start(self : in out m68000) is
   begin
      self.pc := self.addr;
      self.cpu_halt := False;
      self.lr_ctl.mode := PROC_SUP;
   end;
   --
   --  Called to start simulator execution at a specific address.
   --
   overriding
   procedure start(self : in out m68000; addr : addr_bus) is
   begin
      self.addr := addr;
      self.start;
   end;
   --
   --  Called once per frame when start/stop is in the start position and run/pause
   --  is in the run position.
   --
   overriding
   procedure run(self : in out m68000) is
   begin
      if not self.halted then
         self.decode;
      end if;
   end;
   --
   --  Called once when the Deposit switch is moved to the Deposit position.
   --
   overriding
   procedure deposit(self : in out m68000) is
   begin
      if self.sr_ctl.addr then
         self.addr := addr_bus(self.sr_ad);
      else
         self.mem(self.addr) := byte(self.sr_ad and 16#FF#);
         self.addr := self.addr + 1;
      end if;
      self.lr_addr := addr_bus(self.addr);
      self.lr_data := data_bus(self.mem(self.addr));
   end;
   --
   --  Called once when the Examine switch is moved to the Examine position.
   --
   overriding
   procedure examine(self : in out m68000) is
   begin
      self.lr_addr := addr_bus(self.addr);
      self.lr_data := data_bus(self.mem(self.addr));
      self.addr := self.addr + 1;
   end;
   --
   --  ----------------------------------------------------------------------
   --  Simulator information
   --
   --  Called to get number of registers
   --
   overriding
   function registers(self : in out m68000) return uint32 is
      pragma Unreferenced(self);
   begin
      return reg_id'Pos(reg_id'Last) + 1;
   end;
   --
   --  Called to get current variant index
   --
   overriding
   function variant(self : in out m68000) return Natural is
   begin
    return variants_m68000'pos(self.cpu_model);
   end;
   --
   --  Called to set variant
   --
   overriding
   procedure variant(self : in out m68000; v : natural) is
   begin
      self.cpu_model := variants_m68000'Val(v);
   end;
   --
   --  ----------------------------------------------------------------------
   --  Simulator data
   --
   --  Called to set a memory value
   --
   overriding
   procedure set_mem(self : in out m68000; mem_addr : addr_bus;
                     data : data_bus) is
   begin
      self.mem(mem_addr) := byte(data and 16#FF#);
   end;
   --
   --  Called to read a memory value
   --
   overriding
   function read_mem(self : in out m68000; mem_addr : addr_bus) return
     data_bus is
   begin
      return data_bus(self.mem(mem_addr));
   end;
   --
   --  Called to get register name
   --
   overriding
   function reg_name(self : in out m68000; num : uint32)
                     return String is
      pragma Unreferenced(self);
   begin
      if num <= reg_id'Pos(reg_id'Last) then
         return reg_id'Image(reg_id'Val(num));
      else
         return "*invalid*";
      end if;
   end;
   --
   --  Called to get register value
   --
   overriding
   function read_reg(self : in out m68000; num : uint32)
                     return data_bus is
      reg : reg_id;
   begin
      if num <= reg_id'Pos(reg_id'Last) then
         reg := reg_id'Val(num);
         case reg is
            when reg_d0 =>
               return data_bus(self.d0);
            when reg_d1 =>
               return data_bus(self.d1);
            when reg_d2 =>
               return data_bus(self.d2);
            when reg_d3 =>
               return data_bus(self.d3);
            when reg_d4 =>
               return data_bus(self.d4);
            when reg_d5 =>
               return data_bus(self.d5);
            when reg_d6 =>
               return data_bus(self.d6);
            when reg_d7 =>
               return data_bus(self.d7);
            when reg_a0 =>
               return data_bus(self.a0);
            when reg_a1 =>
               return data_bus(self.a1);
            when reg_a2 =>
               return data_bus(self.a2);
            when reg_a3 =>
               return data_bus(self.a3);
            when reg_a4 =>
               return data_bus(self.a4);
            when reg_a5 =>
               return data_bus(self.a5);
            when reg_a6 =>
               return data_bus(self.a6);
            when reg_usp =>
               return data_bus(self.usp);
            when reg_ssp =>
               return data_bus(self.ssp);
            when reg_pc =>
               return data_bus(self.pc);
            when reg_psw =>
               return data_bus(psw_to_word(self.psw));
            when others =>
               return 0;
         end case;
      else
         return 0;
      end if;
   end;
   --
   --  Called to get register value as a string (useful for flag registers)
   --
   overriding
   function read_reg(self : in out m68000; num : uint32)
                     return String is
      reg : reg_id;
   begin
      if num <= reg_id'Pos(reg_id'Last) then
         reg := reg_id'Val(num);
         case reg is
            when reg_d0 =>
               return toHex(self.d0);
            when reg_d1 =>
               return toHex(self.d1);
            when reg_d2 =>
               return toHex(self.d2);
            when reg_d3 =>
               return toHex(self.d3);
            when reg_d4 =>
               return toHex(self.d4);
            when reg_d5 =>
               return toHex(self.d5);
            when reg_d6 =>
               return toHex(self.d6);
            when reg_d7 =>
               return toHex(self.d7);
            when reg_a0 =>
               return toHex(self.a0);
            when reg_a1 =>
               return toHex(self.a1);
            when reg_a2 =>
               return toHex(self.a2);
            when reg_a3 =>
               return toHex(self.a3);
            when reg_a4 =>
               return toHex(self.a4);
            when reg_a5 =>
               return toHex(self.a5);
            when reg_a6 =>
               return toHex(self.a6);
            when reg_usp =>
               return toHex(self.usp);
            when reg_ssp =>
               return toHex(self.ssp);
            when reg_pc =>
               return toHex(self.pc);
            when reg_psw =>
               return
                  (if self.psw.trace1 then "T" else "-") &
                  (if self.psw.trace0 then "t" else "-") &
                  (if self.psw.super then "S" else "u") &
                  (if self.psw.unused4 then "*" else "+") &
                  (if self.psw.unused3 then "*" else "+") &
                  (interrupt_mask'Image(self.psw.mask)) &
                  (if self.psw.unused2 then "*" else "+") &
                  (if self.psw.unused1 then "*" else "+") &
                  (if self.psw.unused0 then "*" else "+") &
                  (if self.psw.extend then "X" else "-") &
                  (if self.psw.negative then "N" else "-") &
                  (if self.psw.zero then "Z" else "-") &
                  (if self.psw.overflow then "V" else "-") &
                  (if self.psw.carry then "C" else "-");
         end case;
      else
         return "*invalid*";
      end if;
   end;
   --
   --  Called to set register value
   --
   --   overriding
   --   procedure set_reg(self : in out simple; num : uint32;
   --                     data : uint32) is null;
   --
   --  This loads data from a file specified by "name" into the simulator memory.
   --
   overriding
   procedure load(self : in out m68000; name : String) is
      inp   : Ada.Text_IO.File_Type;
      line  : Ada.Strings.Unbounded.Unbounded_String;
      count : byte;
      addr  : addr_bus;
      rec   : byte;
      data  : page;
      valid : Boolean;
   begin
      Ada.Text_IO.Open(inp, Ada.Text_IO.In_File, name);
      while not Ada.Text_IO.End_Of_File(inp) loop
         Ada.Text_IO.Unbounded_IO.Get_Line(inp, line);
         S_Record(Ada.Strings.Unbounded.To_String(line), count, addr, rec, data,
                  valid);
         if ((rec = 1) or (rec = 2) or (rec = 3)) and valid then  --  Process a data record
            for i in 0 .. count - 1 loop
               self.memory(addr + addr_bus(i), data(Integer(i)));
            end loop;
         elsif (rec = 7) and valid then
            Ada.Text_IO.Put_Line("Starting address (32 bit) is " & toHex(addr));
            self.pc := addr;
         elsif (rec = 8) and valid then
            Ada.Text_IO.Put_Line("Starting address (24 bit) is " & toHex(addr));
            self.pc := addr;
         elsif (rec = 9) and valid then
            Ada.Text_IO.Put_Line("Starting address (16 bit) is " & toHex(addr));
            self.pc := addr;
         elsif (rec = 0) and valid then
            Ada.Text_IO.Put("Header: ");
            for i in 0 .. count - 1 loop
               Ada.Text_IO.Put("" & Character'Val(data(Integer(i))));
            end loop;
            Ada.Text_IO.New_line;
         else
            Ada.Text_IO.Put_Line("Ignoring record: " & Ada.Strings.Unbounded.To_String(line));
         end if;
      end loop;
      Ada.Text_IO.Close(inp);
      self.cpu_halt := False;
   exception
      when Ada.Text_IO.Name_Error =>
         Ada.Text_IO.Put_Line("Error in file name: " & name);
      when error : others =>
         Ada.Text_IO.Put_Line("Error occured processing " & name);
         Ada.Text_IO.Put_Line(Ada.Exceptions.Exception_Message(error));
         Ada.Text_IO.Put_Line(Ada.Exceptions.Exception_Information(error));
         Ada.Text_IO.Put_Line("Input line <" & Ada.Strings.Unbounded.To_String(line) & ">");
         Ada.Text_IO.Close(inp);
   end;
   --
   --  Called to check if the CPU is halted
   --
   overriding
   function halted(self : in out m68000) return Boolean is
   begin
      return self.cpu_halt;
   end;
   --
   --  This clears the halted flag allowing processing to continue.
   --
   overriding
   procedure continue_proc(self : in out m68000) is
   begin
      self.cpu_halt := False;
   end;
   --
   --  Interrupt status.  Returns simulator dependent status of interrupts
   --
   overriding
   function intStatus(self : in out m68000) return int32 is
   begin
      return int32(self.psw.mask);
   end;
   --
   --  Post a reset exception request
   --
   overriding
   procedure reset(self : in out m68000) is
   begin
      self.except_pend(BBS.Sim_CPU.m68000.exceptions.ex_0_reset_ssp) := True;
      self.check_except := True;
   end;
   --
   --  Enable/disable interrupt processing (ususally for debuggin purposes)
   --  Also clears pending interrupts if set to False.
   --
   overriding
   procedure interrupts(self : in out m68000; state : Boolean) is
   begin
      self.int_enable := state;
      if state then
         Ada.Text_IO.Put_Line("CPU: Interrupt processing enabled.");
      else
         Ada.Text_IO.Put_Line("CPU: Interrupt processing disabled.");
         for i in 25 .. 31 loop
            self.except_pend(byte(i)) := False;
            self.except_prio(byte(i)) := 0;
         end loop;
         for i in 64 .. 255 loop
            self.except_pend(byte(i)) := False;
            self.except_prio(byte(i)) := 0;
         end loop;
      end if;
   end;
   --
   --  Post an interrupt exception
   --
   overriding
   procedure interrupt(self : in out m68000; data : long) is
      inter : constant byte := byte(data and 16#FF#);
      prio  : constant byte := byte(data/16#100# and 16#FF#);
   begin
      --
      --  Allowed interrupt numbers are 25-31 for autovectors and 64-255.
      --  Other requests are ignored.  They could be turned into 15 for
      --  an uninitialied interrupt vector.
      --
      if self.int_enable then
         if (inter >= 25 and inter <= 31) or (inter >= 64 and inter <= 255) then
            BBS.Sim_CPU.m68000.exceptions.process_exception(self, inter, prio);
         end if;
      end if;
   end;
   --
   --  Set and clear breakpoints.  The implementation is up to the specific simulator.
   --
   procedure setBreak(self : in out m68000; addr : addr_bus) is
   begin
      self.break_enable := True;
      self.break_point  := addr;
   end;
   --
   procedure clearBreak(self : in out m68000; addr : addr_bus) is
   begin
      self.break_enable := False;
   end;
--  --------------------------------------------------------------------
--
--  Code for the instruction processing.
--
   procedure decode(self : in out m68000) is
   begin
      --
      --  Check for odd PC value
      --
      if (self.pc and 1) = 1 then
         Ada.Text_IO.Put_Line("CPU:  PC set to odd address " & toHex(self.pc));
         Ada.Text_IO.Put_Line("   :  Previous PC is " & toHex(self.inst_pc));
         self.cpu_halt := True;
         return;
      end if;
      --
      --  Check for breakpoint
      --
      if self.break_enable then
         if self.break_point = self.pc then
            self.cpu_halt := True;
            if (word(self.trace) and 1) = 1 then
               Ada.Text_IO.Put_Line("TRACE: Breakpoint at " & toHex(self.pc));
            end if;
            return;
         end if;
      end if;
      self.inst_pc := self.pc;
      if (word(self.trace) and 1) = 1 then
         Ada.Text_IO.Put("TRACE: Address: " & toHex(self.pc));
      end if;
      instr := self.get_next;
      if (word(self.trace) and 1) = 1 then
         Ada.Text_IO.Put_Line(", instruction " & toHex(instr));
      end if;
      case instr1.pre is
        when 16#0# =>  --  Group 0 - Bit manipulation/MOVEP/Immediate
           BBS.Sim_CPU.m68000.line_0.decode_0(self);
        when 16#1# =>  --  Group 1 - Move byte
           BBS.Sim_CPU.m68000.line_1.decode_1(self);
        when 16#2# =>  --  Group 2 - Move long
           BBS.Sim_CPU.m68000.line_2.decode_2(self);
        when 16#3# =>  --  Group 3 - Move word
           BBS.Sim_CPU.m68000.line_3.decode_3(self);
        when 16#4# =>  --  Group 4 - Miscellaneous
           BBS.Sim_CPU.m68000.line_4.decode_4(self);
        when 16#5# =>  --  Group 5 - ADDQ/SUBQ/Scc/DBcc/TRAPcc
           BBS.Sim_CPU.m68000.line_5.decode_5(self);
        when 16#6# =>  --  Group 6 - Bcc/BSR/BRA
           BBS.Sim_CPU.m68000.line_6.decode_6(self);
        when 16#7# =>  --  Group 7 - MOVEQ
           BBS.Sim_CPU.m68000.line_7.decode_7(self);
        when 16#8# =>  --  Group 8 - OR/DIV/SBCD
           BBS.Sim_CPU.m68000.line_8.decode_8(self);
        when 16#9# =>  --  Group 9 - SUB/SUBX
           BBS.Sim_CPU.m68000.line_9.decode_9(self);
        when 16#a# =>  --  Group 10 - Unassigned/Reserved (A-Line)
           BBS.Sim_CPU.m68000.exceptions.process_exception(self,
               BBS.Sim_CPU.m68000.exceptions.ex_10_line_1010);
        when 16#b# =>  --  Group 11 - CMP/EOR
           BBS.Sim_CPU.m68000.line_b.decode_b(self);
        when 16#c# =>  --  Group 12 - AND/MUL/ABCD/EXG
           BBS.Sim_CPU.m68000.line_c.decode_c(self);
        when 16#d# =>  --  Group 13 - ADD/ADDX
           BBS.Sim_CPU.m68000.line_d.decode_d(self);
        when 16#e# =>  --  Group 14 - Shift/Rotate/Bit Field
           BBS.Sim_CPU.m68000.line_e.decode_e(self);
        when 16#f# =>  --  Group 15 - Unassigned/Reserved (F-Line) (table lookup and interpolation)
           BBS.Sim_CPU.m68000.exceptions.process_exception(self,
               BBS.Sim_CPU.m68000.exceptions.ex_11_line_1111);
      end case;
      --
      --  Check for exceptions.  Note that trace exceptions will need to
      --  be added here.
      --
      if self.check_except then
         BBS.Sim_CPU.m68000.exceptions.perform_exception(self);
      end if;
   end;
   --
   --  Utility code for instruction decoder
   --
   --  Get next instruction
   --
   function get_next(self : in out m68000) return word is
      t : word;
   begin
      self.lr_ctl.atype := ADDR_INST;
      if self.psw.super then
         self.lr_ctl.mode := PROC_SUP;
      else
         self.lr_ctl.mode := PROC_USER;
      end if;
      t := self.memory(self.pc);
      self.pc := self.pc + 2;
      return t;
   end;
   --
   --  Get extension word
   --
   function get_ext(self : in out m68000) return word is
      t : word;
   begin
      self.lr_ctl.atype := ADDR_INST;
      t := self.memory(self.pc);
      self.pc := self.pc + 2;
      return t;
   end;
   --
   --  Sign extension
   --
   function sign_extend(d : byte) return long is
   begin
      if (d and 16#80#) = 16#80# then
         return long(d) or 16#FFFF_FF00#;
      else
         return long(d);
      end if;
   end;
   --
   function sign_extend(d : word) return long is
   begin
      if (d and 16#8000#) = 16#8000# then
         return long(d) or 16#FFFF_0000#;
      else
         return long(d);
      end if;
   end;
   --
   --  Register opertions
   --
   function get_regb(self : in out m68000; data_addr : reg_type; reg_index : reg_num) return byte is
   begin
      if data_addr = data then
         case reg_index is
            when 0 =>
               return byte(self.d0 and 16#ff#);
            when 1 =>
               return byte(self.d1 and 16#ff#);
            when 2 =>
               return byte(self.d2 and 16#ff#);
            when 3 =>
               return byte(self.d3 and 16#ff#);
            when 4 =>
               return byte(self.d4 and 16#ff#);
            when 5 =>
               return byte(self.d5 and 16#ff#);
            when 6 =>
               return byte(self.d6 and 16#ff#);
            when 7 =>
               return byte(self.d7 and 16#ff#);
         end case;
      else
         case reg_index is
            when 0 =>
              return byte(self.a0 and 16#ff#);
            when 1 =>
              return byte(self.a1 and 16#ff#);
            when 2 =>
              return byte(self.a2 and 16#ff#);
            when 3 =>
              return byte(self.a3 and 16#ff#);
            when 4 =>
              return byte(self.a4 and 16#ff#);
            when 5 =>
              return byte(self.a5 and 16#ff#);
            when 6 =>
              return byte(self.a6 and 16#ff#);
            when 7 =>
               if self.psw.super then
                  return byte(self.ssp and 16#ff#);
               else
                  return byte(self.usp and 16#ff#);
               end if;
         end case;
      end if;
   end;
   function get_regw(self : in out m68000; data_addr : reg_type; reg_index : reg_num) return word is
   begin
      if data_addr = data then
        case reg_index is
           when 0 =>
              return word(self.d0 and 16#ffff#);
           when 1 =>
              return word(self.d1 and 16#ffff#);
           when 2 =>
              return word(self.d2 and 16#ffff#);
           when 3 =>
              return word(self.d3 and 16#ffff#);
           when 4 =>
              return word(self.d4 and 16#ffff#);
           when 5 =>
              return word(self.d5 and 16#ffff#);
           when 6 =>
              return word(self.d6 and 16#ffff#);
           when 7 =>
              return word(self.d7 and 16#ffff#);
        end case;
      else
        case reg_index is
           when 0 =>
              return word(self.a0 and 16#ffff#);
           when 1 =>
              return word(self.a1 and 16#ffff#);
           when 2 =>
              return word(self.a2 and 16#ffff#);
           when 3 =>
              return word(self.a3 and 16#ffff#);
           when 4 =>
              return word(self.a4 and 16#ffff#);
           when 5 =>
              return word(self.a5 and 16#ffff#);
           when 6 =>
              return word(self.a6 and 16#ffff#);
           when 7 =>
              if self.psw.super then
                 return word(self.ssp and 16#ffff#);
              else
                 return word(self.usp and 16#ffff#);
              end if;
        end case;
      end if;
   end;
   function get_regl(self : in out m68000; data_addr : reg_type; reg_index : reg_num) return long is
   begin
      if data_addr = data then
         case reg_index is
            when 0 =>
               return self.d0;
            when 1 =>
               return self.d1;
            when 2 =>
               return self.d2;
            when 3 =>
               return self.d3;
            when 4 =>
               return self.d4;
            when 5 =>
               return self.d5;
            when 6 =>
               return self.d6;
            when 7 =>
               return self.d7;
         end case;
       else
         case reg_index is
            when 0 =>
               return self.a0;
            when 1 =>
               return self.a1;
            when 2 =>
               return self.a2;
            when 3 =>
               return self.a3;
            when 4 =>
               return self.a4;
            when 5 =>
               return self.a5;
            when 6 =>
               return self.a6;
            when 7 =>
               if self.psw.super then
                  return self.ssp;
               else
                  return self.usp;
               end if;
         end case;
      end if;
   end;
   --
   procedure set_regb(self : in out m68000; data_addr : reg_type; reg_index : reg_num; value : byte) is
      l : constant long := long(value);
   begin
      if data_addr = data then
         case reg_index is
            when 0 =>
               self.d0 := (self.d0 and 16#FFFF_FF00#) or l;
            when 1 =>
               self.d1 := (self.d1 and 16#FFFF_FF00#) or l;
            when 2 =>
               self.d2 := (self.d2 and 16#FFFF_FF00#) or l;
            when 3 =>
               self.d3 := (self.d3 and 16#FFFF_FF00#) or l;
            when 4 =>
               self.d4 := (self.d4 and 16#FFFF_FF00#) or l;
            when 5 =>
               self.d5 := (self.d5 and 16#FFFF_FF00#) or l;
            when 6 =>
               self.d6 := (self.d6 and 16#FFFF_FF00#) or l;
            when 7 =>
               self.d7 := (self.d7 and 16#FFFF_FF00#) or l;
         end case;
      else
         Ada.Text_IO.Put_Line("Byte write to address register not allowed.");
      end if;
   end;

   procedure set_regw(self : in out m68000; data_addr : reg_type; reg_index : reg_num; value : word) is
      l : constant long := long(value);
   begin
     if data_addr = data then
       case reg_index is
         when 0 =>
           self.d0 := (self.d0 and 16#FFFF_0000#) or l;
         when 1 =>
           self.d1 := (self.d1 and 16#FFFF_0000#) or l;
         when 2 =>
           self.d2 := (self.d2 and 16#FFFF_0000#) or l;
         when 3 =>
           self.d3 := (self.d3 and 16#FFFF_0000#) or l;
         when 4 =>
           self.d4 := (self.d4 and 16#FFFF_0000#) or l;
         when 5 =>
           self.d5 := (self.d5 and 16#FFFF_0000#) or l;
         when 6 =>
           self.d6 := (self.d6 and 16#FFFF_0000#) or l;
         when 7 =>
           self.d7 := (self.d7 and 16#FFFF_0000#) or l;
       end case;
     else
       case reg_index is
         when 0 =>
           self.a0 := (self.a0 and 16#FFFF_0000#) or l;
         when 1 =>
           self.a1 := (self.a1 and 16#FFFF_0000#) or l;
         when 2 =>
           self.a2 := (self.a2 and 16#FFFF_0000#) or l;
         when 3 =>
           self.a3 := (self.a3 and 16#FFFF_0000#) or l;
         when 4 =>
           self.a4 := (self.a4 and 16#FFFF_0000#) or l;
         when 5 =>
           self.a5 := (self.a5 and 16#FFFF_0000#) or l;
         when 6 =>
           self.a6 := (self.a6 and 16#FFFF_0000#) or l;
         when 7 =>
           if self.psw.super then
              self.ssp := (self.ssp and 16#FFFF_0000#) or l;
           else
              self.usp := (self.usp and 16#FFFF_0000#) or l;
           end if;
        end case;
     end if;
   end;
   procedure set_regl(self : in out m68000; data_addr : reg_type; reg_index : reg_num; value : long) is
   begin
     if data_addr = data then
       case reg_index is
         when 0 =>
           self.d0 := value;
         when 1 =>
           self.d1 := value;
         when 2 =>
           self.d2 := value;
         when 3 =>
           self.d3 := value;
         when 4 =>
           self.d4 := value;
         when 5 =>
           self.d5 := value;
         when 6 =>
           self.d6 := value;
         when 7 =>
           self.d7 := value;
       end case;
     else
       case reg_index is
         when 0 =>
           self.a0 := value;
         when 1 =>
           self.a1 := value;
         when 2 =>
           self.a2 := value;
         when 3 =>
           self.a3 := value;
         when 4 =>
           self.a4 := value;
         when 5 =>
           self.a5 := value;
         when 6 =>
           self.a6 := value;
         when 7 =>
           if self.psw.super then
              self.ssp := value;
           else
              self.usp := value;
           end if;
        end case;
     end if;
   end;
   --
   --  Get EA.  Decode the register, addressing modes, and extension
   --  words to get the effective address.  Also does any pre-processing,
   --  namely pre-decrement, as appropriate.
   --
   --  Mode  Addressing mode
   --    0   Data register direct
   --    1   Address register direct
   --    2   Address register indirect
   --    3   Address register indirect with post increment
   --    4   Address register indirect with pre decrement
   --    5   Address register indirect with 16 bit displacement
   --    6   Extension word modes
   --    7   Special modes
   --
   function get_EA(self : in out m68000; reg : reg_num; mode : mode_code;
      size : data_size) return operand is
   begin
      case mode is
        when 0 =>  --  Data register <Dx>
           return (reg => reg, mode => mode, size => size, kind => data_register);
        when 1 =>  --  Address register <Ax>
           return (reg => reg, mode => mode, size => size, kind => address_register);
        when 2 =>  --  Address register indirect <(Ax)>
           return (reg => reg, mode => mode, size => size, kind => memory_address, address => self.get_regl(Address, reg));
        when 3 =>  --  Address register indirect with post increment <(Ax)+>
           return (reg => reg, mode => mode, size => size, kind => memory_address, address => self.get_regl(Address, reg));
        when 4 =>  --  Address register indirect with pre decrement <-(Ax)>
           case size is
             when data_byte =>
                if reg = 7 then --  Stack pointer needs to stay even
                   self.set_regl(Address, reg, self.get_regl(Address, reg) - 2);
                else
                   self.set_regl(Address, reg, self.get_regl(Address, reg) - 1);
                end if;
             when data_word =>
                self.set_regl(Address, reg, self.get_regl(Address, reg) - 2);
             when data_long =>
                self.set_regl(Address, reg, self.get_regl(Address, reg) - 4);
             when data_long_long =>
                self.set_regl(Address, reg, self.get_regl(Address, reg) - 8);
           end case;
           return (reg => reg, mode => mode, size => size, kind => memory_address, address => self.get_regl(Address, reg));
        when 5 =>  --  Address register indirect with displacement <(d16,Ax)> or <d(An)>
           ext := self.get_ext;  --  Get extension word
           return (reg => reg, mode => mode, size => size, kind => memory_address, address =>
              self.get_regl(Address, reg) + sign_extend(ext));
        when 6 =>  --  Extension word modes
           return self.decode_ext(reg, size);
        when 7 =>  --  Special modes
           return self.decode_special(reg, size);
      end case;
   end;
   --
   --  Do post-processing, namely post-increment, if needed.
   --
   procedure post_EA(self : in out m68000; ea : operand) is
   begin
      if ea.mode = 3 then  --  Address register indirect with post increment<(Ax)+>
        case ea.size is
          when data_byte =>
             if ea.reg = 7 then  --  Stack pointer needs to stay even
                self.set_regl(Address, ea.reg, self.get_regl(Address, ea.reg) + 2);
             else
                self.set_regl(Address, ea.reg, self.get_regl(Address, ea.reg) + 1);
             end if;
          when data_word =>
             self.set_regl(Address, ea.reg, self.get_regl(Address, ea.reg) + 2);
          when data_long =>
             self.set_regl(Address, ea.reg, self.get_regl(Address, ea.reg) + 4);
          when data_long_long =>
             self.set_regl(Address, ea.reg, self.get_regl(Address, ea.reg) + 8);
        end case;
      end if;
   end;
   --
   --  Decode extension word and return effective address
   --
   function decode_ext(self : in out m68000; reg : reg_num; size : data_size) return operand is
     ea    : addr_bus := self.get_regl(Address, reg);
     scale : addr_bus := 1;
     temp  : word;
   begin
      ext := self.get_ext;
      if ext_brief.br_full then
         --
         --  Full extension word is only supported by CPU32 and M68020 or
         --  higher processors.
         --
         Ada.Text_IO.Put_Line("Full extension word at " & toHex(self.pc - 2) &
            " is not supported yet.  Instruction at " & toHex(self.inst_pc));
      else
         --
         --  Brief extension word is supported by the full M68000 family.
         --
         ea := ea + sign_extend(ext_brief.displacement);
         --
         --  Scale is used only on later processors
         --
         if ext_brief.word_long then
            ea := ea + self.get_regl(ext_brief.reg_mem, ext_brief.reg)*scale;
         else
            temp := self.get_regw(ext_brief.reg_mem, ext_brief.reg);
            ea := ea + sign_extend(temp)*scale;
         end if;
         return (reg => 0, mode => 0, size => size, kind => memory_address, address => ea);
      end if;
      return (reg => 0, mode => 0, size => size, kind => value, value => 0);
   end;
   --
   --  Decode group 7 (special addressing modes
   --  Note that depending on the mode, this may be an effective address
   --  or a value.  If <value> is true, then a value is returned in <data>,
   --  otherwise an address is returned in <ea>.
   --
   --  Reg  Addressing mode
   --   0   Absolute short address
   --   1   Absolute long address
   --   2   Program counter with displacement
   --   3   Program counter with index
   --   4   Immediate data (byte, word, or long)
   --  5-7  unused in 68000
   --
   function decode_special(self : in out m68000; reg : reg_num; size : data_size)
         return operand is
      ea    : addr_bus := self.pc;
      scale : addr_bus := 1;
      ext1  : word;
      ext2  : word;
      ret_value : long;
   begin
      case reg is
         when 0 =>  --  Absolute short address
            return (reg => 0, mode => 0, size => size, kind => memory_address,
                  address => sign_extend(self.get_ext));
         when 1 =>  --  Absolute long address
            ext1 := self.get_ext;
            ext2 := self.get_ext;
            return (reg => 0, mode => 0, size => size, kind => memory_address,
                  address => long(ext1)*16#0001_0000# + long(ext2));
         when 2 =>  --  Program counter with displacement
            return (reg => 0, mode => 0, size => size, kind => memory_address,
                  address => sign_extend(self.get_ext) + self.pc - 2);
         when 3 =>  --  Program counter with index
            ext := self.get_ext;
            if ext_brief.br_full then
               --
               --  Full extension word is only supported by CPU32 and M68020 or
               --  higher processors.
               --
               Ada.Text_IO.Put_Line("CPU: Full extension word is not supported yet.");
               Ada.Text_IO.Put_Line("   : Instruction " & toHex(instr) & " at " &
                  toHex(self.inst_pc));
            else
               --
               --  Brief extension word is supported by the full M68000 family.
               --
               ea := ea + sign_extend(ext_brief.displacement);
               --
               --  Scale is used only on later processors
               --
               if ext_brief.word_long then
                  ea := ea + self.get_regl(ext_brief.reg_mem, ext_brief.reg)*scale;
               else
                  ext1 := self.get_regw(ext_brief.reg_mem, ext_brief.reg);
                  ea := ea + sign_extend(ext1)*scale;
               end if;
               return (reg => 0, mode => 0, size => size, kind => memory_address, address => ea);
            end if;
         when 4 =>  --  Immediate data (byte, word, or long)
            ext1 := self.get_ext;
            case size is
              when data_byte =>
                 ret_value := long(ext1 and 16#00FF#);
              when data_word =>
                 ret_value := long(ext1);
              when data_long =>
                 ext2 := self.get_ext;
                 ret_value := long(ext1)*16#0001_0000# + long(ext2);
              when others =>
                 Ada.Text_IO.Put_Line("Unrecognized immediate data size");
                 ret_value := 0;
            end case;
            return (reg => 0, mode => 0, size => size, kind => value, value => ret_value);
         when others =>
            Ada.Text_IO.Put_Line("CPU: Unrecognized special mode register " & reg_num'Image(reg));
            Ada.Text_IO.Put_Line("   : Instruction " & toHex(instr) & " at " &
               toHex(self.inst_pc));
      end case;
      return (reg => 0, mode => 0, size => size, kind => value, value => 0);
   end;
   --
   --  Get and set value at the effective address.  Note that some effective
   --  addresses cannot be set.
   --
   function get_ea(self : in out m68000; ea : operand) return long is
     b : byte;
     w : word;
     v : long;
   begin
      case ea.kind is
         when value =>
            v := ea.value;
         when data_register =>
            v := self.get_regl(Data, ea.reg);
         when address_register =>
            v := self.get_regl(Address, ea.reg);
         when memory_address =>
            self.lr_ctl.atype := ADDR_DATA;
            if ea.size = data_byte then
               b := self.memory(ea.address);
               v := long(b);
            elsif ea.size = data_word then
               w := self.memory(ea.address);
               v := long(w);
            else
               v := self.memory(ea.address);
            end if;
      end case;
      case ea.size is
         when data_byte =>
            return (v and 16#FF#);
         when data_word =>
            return (v and 16#FFFF#);
         when others =>
            return v;
      end case;
   end;
   --
   procedure set_ea(self : in out m68000; ea : operand; val : long) is
   begin
      case ea.kind is
         when value =>
            null;
         when data_register =>
            case ea.size is
              when data_byte =>
                 self.set_regb(Data, ea.reg, byte(val and 16#FF#));
              when data_word =>
                 self.set_regw(Data, ea.reg, word(val and 16#FFFF#));
              when data_long =>
                 self.set_regl(Data, ea.reg, val);
              when others =>
                 null;
            end case;
         when address_register =>
            case ea.size is
              when data_word =>
                 self.set_regw(Address, ea.reg, word(val and 16#FFFF#));
              when data_long =>
                 self.set_regl(Address, ea.reg, val);
              when others =>
                 null;
            end case;
         when memory_address =>
            self.lr_ctl.atype := ADDR_DATA;
            if ea.size = data_byte then
               self.memory(ea.address, byte(val and 16#FF#));
            elsif ea.size = data_word then
               self.memory(ea.address, word(val and 16#FFFF#));
            else
               self.memory(ea.address, val);
            end if;
      end case;
   end;
   --
   --  Set flags based on value (zero, sign, parity)
   --
   procedure setf(self : in out m68000; value : data_bus) is
   begin
      self.psw.zero := (value = 0);
   end;
   --
   --  All memory accesses should be routed through these functions so that they
   --  can do checks for memory-mapped I/O or shared memory.
   --
   --  Trim the address depending on the CPU model.  The 68008 has 20 bits,
   --  the 68000 has 24 bits, some others have the full 32 bits.  This will
   --  change as more models are implemented.
   --
   function trim_addr(addr : addr_bus; model : variants_m68000) return addr_bus is
   begin
     if model = var_68000 then
        return (addr and 16#00FF_FFFF#);
     elsif model = var_68008 then
        return (addr and 16#000F_FFFF#);
     else
        return addr;
     end if;
   end;
   --
   --  Set memory.
   --
   procedure memory(self : in out m68000; addr : addr_bus; value : long) is
   begin
      --
      --  Set LED register values
      --
      self.lr_addr := addr;
      self.lr_data := data_bus(value);
      --
      --  Set memory.  Optionally, checks for memory mapped I/O or shared memory
      --  or other special stuff can be added here.
      --
      if ((self.cpu_model = var_68000) or (self.cpu_model = var_68010)) and lsb(addr) then
         Ada.Text_IO.Put_Line("CPU: Long write to odd address " & toHex(addr));
         Ada.Text_IO.Put_Line("   : Instruction " & toHex(instr) & " at " &
            toHex(self.inst_pc));
         BBS.Sim_CPU.m68000.exceptions.process_exception(self,
            BBS.Sim_CPU.m68000.exceptions.ex_3_addr_err);
      end if;
      self.memb(addr, byte(value/16#0100_0000#));
      self.memb(addr + 1, byte((value/16#0001_0000#) and 16#FF#));
      self.memb(addr + 2, byte((value/16#0000_0100#) and 16#FF#));
      self.memb(addr + 3, byte(value and 16#FF#));
   end;
   --
   procedure memory(self : in out m68000; addr : addr_bus; value : word) is
   begin
      --
      --  Set LED register values
      --
      self.lr_addr := addr;
      self.lr_data := data_bus(value);
      --
      --  Set memory.  Optionally, checks for memory mapped I/O or shared memory
      --  or other special stuff can be added here.
      --
      if ((self.cpu_model = var_68000) or (self.cpu_model = var_68010)) and lsb(addr) then
         Ada.Text_IO.Put_Line("CPU: Word write to odd address " & toHex(addr));
         Ada.Text_IO.Put_Line("   : Instruction " & toHex(instr) & " at " &
            toHex(self.inst_pc));
         BBS.Sim_CPU.m68000.exceptions.process_exception(self,
            BBS.Sim_CPU.m68000.exceptions.ex_3_addr_err);
      end if;
      self.memb(addr, byte((value/16#0000_0100#) and 16#FF#));
      self.memb(addr + 1,  byte(value and 16#FF#));
   end;
   --
   procedure memory(self : in out m68000; addr : addr_bus; value : byte) is
   begin
      --
      --  Set LED register values
      --
      self.lr_addr := addr;
      self.lr_data := data_bus(value);
      self.memb(addr, value);
   end;
   --
   --  Read memory.
   --
   function memory(self : in out m68000; addr : addr_bus) return long is
      t : data_bus;
   begin
      if ((self.cpu_model = var_68000) or (self.cpu_model = var_68010)) and lsb(addr) then
         Ada.Text_IO.Put_Line("CPU: Long read from odd address " & toHex(addr));
         Ada.Text_IO.Put_Line("   : Instruction " & toHex(instr) & " at " &
            toHex(self.inst_pc));
         BBS.Sim_CPU.m68000.exceptions.process_exception(self,
            BBS.Sim_CPU.m68000.exceptions.ex_3_addr_err);
      end if;
      t := data_bus(self.memb(addr))*16#0100_0000# +
           data_bus(self.memb(addr + 1))*16#0001_0000# +
           data_bus(self.memb(addr + 2))*16#0000_0100# +
           data_bus(self.memb(addr + 3));
      --
      --  Set LED register values
      --
      self.lr_addr := addr;
      self.lr_data := t;
      return long(t);
   end;
   --
   function memory(self : in out m68000; addr : addr_bus) return word is
      t : word;
   begin
      if ((self.cpu_model = var_68000) or (self.cpu_model = var_68010)) and lsb(addr) then
         Ada.Text_IO.Put_Line("CPU: Word read from odd address " & toHex(addr));
         Ada.Text_IO.Put_Line("   : Instruction " & toHex(instr) & " at " &
            toHex(self.inst_pc));
         BBS.Sim_CPU.m68000.exceptions.process_exception(self,
            BBS.Sim_CPU.m68000.exceptions.ex_3_addr_err);
      end if;
      t := word(self.memb(addr))*16#0000_0100# +
           word(self.memb(addr + 1));
      --
      --  Set LED register values
      --
      self.lr_addr := addr;
      self.lr_data := data_bus(t);
      return t;
   end;
   --
   function memory(self : in out m68000; addr : addr_bus) return byte is
      t : byte := self.memb(addr);
   begin
      --
      --  Set LED register values
      --
      self.lr_addr := addr;
      self.lr_data := data_bus(t);
      return t;
   end;
   --
   --  Functions to actually access memory, trimming the address as needed
   --  for the processor variant or memory size.  Also checks for memory
   --  mapped I/O.  If an MMU gets implemented, the logic should be added
   --  here.
   --
   procedure memb(self : in out m68000; addr : addr_bus; value : byte) is
      t_addr : constant addr_bus := trim_addr(addr, self.cpu_model);
   begin
      --
      --  Set memory.  Checks for memory mapped I/O.  Checks for shared memory
      --  or other special stuff can be added here.
      --
      if self.io_ports.contains(t_addr) then
         if (word(self.trace) and 2) = 2 then
            Ada.Text_IO.Put_Line("TRACE: Output " & toHex(value) & " to port " & toHex(t_addr));
         end if;
         self.io_ports(addr).all.write(t_addr, data_bus(value));
      else
         self.mem(t_addr) := byte(value and 16#FF#);
      end if;
   end;
   function memb(self : in out m68000; addr : addr_bus) return byte is
      t_addr : constant addr_bus := trim_addr(addr, self.cpu_model);
   begin
      --
      --  Read memory.  Checks for memory mapped I/O.  Checks for shared memory,
      --  memory management, or other special stuff can be added here.
      --
      if self.io_ports.contains(t_addr) then
         if (word(self.trace) and 2) = 2 then
            Ada.Text_IO.Put_Line("TRACE: Input from port " & toHex(addr));
         end if;
         return byte(self.io_ports(t_addr).all.read(addr_bus(t_addr)) and 16#FF#);
      else
         return self.mem(t_addr);
      end if;
   end;
   --
   --  Push and pop long or word to the user or system stack
   --
   procedure push(self : in out m68000; stack : Boolean; value : long) is
      sp : long;
   begin
      if stack then
         sp := self.ssp;
         sp := sp - 4;
         self.memory(sp, value);
         self.ssp := sp;
      else
         sp := self.usp;
         sp := sp - 4;
         self.memory(sp, value);
         self.usp := sp;
      end if;
   end;
   --
   procedure push(self : in out m68000; stack : Boolean; value : word) is
      sp : long;
   begin
      if stack then
         sp := self.ssp;
         sp := sp - 2;
         self.memory(sp, value);
         self.ssp := sp;
      else
         sp := self.usp;
         sp := sp - 2;
         self.memory(sp, value);
         self.usp := sp;
      end if;
   end;
   --
   function pop(self : in out m68000; stack : Boolean) return long is
      sp  : long;
      val : long;
   begin
      if stack then
         sp := self.ssp;
         val := self.memory(sp);
         sp := sp + 4;
         self.ssp := sp;
      else
         sp := self.usp;
         val := self.memory(sp);
         sp := sp + 4;
         self.usp := sp;
      end if;
      return val;
   end;
   --
   function pop(self : in out m68000; stack : Boolean) return word is
      sp  : long;
      val : word;
   begin
      if stack then
         sp := self.ssp;
         val := self.memory(sp);
         sp := sp + 2;
         self.ssp := sp;
      else
         sp := self.usp;
         val := self.memory(sp);
         sp := sp + 2;
         self.usp := sp;
      end if;
      return val;
   end;
   --
   --  Called to attach an I/O device to a simulator at a specific address.
   --  Bus is simulator dependent as some CPUs have separate I/O and
   --  memory space, and some don't.
   --
   overriding
   procedure attach_io(self : in out m68000; io_dev : io_access;
                       base_addr : addr_bus; bus : bus_type) is
      size : addr_bus := io_dev.all.getSize;
      valid : Boolean := True;
   begin
      if bus = BUS_IO then
         Ada.Text_IO.Put_Line("I/O mapped I/O not used in 68000 family");
      elsif bus = BUS_MEMORY then
         --
         --  Check for port conflicts
         --
         for i in base_addr .. base_addr + size - 1 loop
           if self.io_ports.contains(i) then
               valid := False;
               Ada.Text_IO.Put_Line("Port conflict detected attching device to port " & toHex(i));
           end if;
           exit when not valid;
         end loop;
         --
         --  If no conflict, attach the port
         --
         if valid then
            for i in base_addr .. base_addr + size - 1 loop
               self.io_ports.include(i, io_dev);
               Ada.Text_IO.Put_Line("Attaching " & io_dev.name &
                  " to memory location " & toHex(i));
            end loop;
            io_dev.setBase(base_addr);
         end if;
      else
         Ada.Text_IO.Put_Line("Unknown I/O bus type");
      end if;
   end;
   --
end BBS.Sim_CPU.m68000;