bbs_simcpu_0.1.0_73ecd6e3/src/i8080/bbs-sim_cpu-i8080.adb

   1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
--
--  Author: Brent Seidel
--  Date: 31-Jul-2024
--
--  This file is part of SimCPU.
--  SimCPU is free software: you can redistribute it and/or modify it
--  under the terms of the GNU General Public License as published by the
--  Free Software Foundation, either version 3 of the License, or (at your
--  option) any later version.
--
--  SimCPU is distributed in the hope that it will be useful, but
--  WITHOUT ANY WARRANTY; without even the implied warranty of
--  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General
--  Public License for more details.
--
--  You should have received a copy of the GNU General Public License along
--  with SimCPU. If not, see <https://www.gnu.org/licenses/>.--
--
with Ada.Unchecked_Conversion;
with Ada.Text_IO;
with Ada.Text_IO.Unbounded_IO;
with Ada.Strings.Unbounded;
package body BBS.Sim_CPU.i8080 is
   --
   function uint16_to_ctrl is new Ada.Unchecked_Conversion(source => uint16,
                                                           target => ctrl_mode);
   function psw_to_byte is new Ada.Unchecked_Conversion(source => status_word,
                                                           target => byte);
   function byte_to_psw is new Ada.Unchecked_Conversion(source => byte,
                                                        target => status_word);
   function byte_to_op is new Ada.Unchecked_Conversion(source => byte,
                                                       target => opcode);
   --
   --  ----------------------------------------------------------------------
   --  Simulator control
   --
   --  Called once when Start/Stop switch is moved to start position
   --
   overriding
   procedure start(self : in out i8080) is
   begin
      self.pc := self.addr;
      self.cpu_halt := False;
      self.lr_ctl.mode := PROC_KERN;
   end;
   --
   --  Called to start simulator execution at a specific address.
   --
   overriding
   procedure start(self : in out i8080; addr : addr_bus) is
   begin
      self.start;
      self.pc := word(addr and 16#FFFF#);
   end;
   --
   --  Called once per frame when start/stop is in the start position and run/pause
   --  is in the run position.
   --
   overriding
   procedure run(self : in out i8080) is
   begin
      if not self.halted then
         self.decode;
      end if;
   end;
   --
   --  Called once when the Deposit switch is moved to the Deposit position.
   --
   overriding
   procedure deposit(self : in out i8080) is
   begin
      if self.sr_ctl.addr then
         self.addr := word(self.sr_ad and 16#FFFF#);
      else
         self.mem(self.addr) := byte(self.sr_ad and 16#FF#);
         self.addr := self.addr + 1;
      end if;
      self.lr_addr := addr_bus(self.addr);
      self.lr_data := data_bus(self.mem(self.addr) and 16#FF#);
   end;
   --
   --  Called once when the Examine switch is moved to the Examine position.
   --
   overriding
   procedure examine(self : in out i8080) is
   begin
      self.lr_addr := addr_bus(self.addr);
      self.lr_data := data_bus(self.mem(self.addr));
      self.addr := self.addr + 1;
   end;
   --
   --  ----------------------------------------------------------------------
   --  Simulator information
   --
   --  Called first to initialize the simulator
   --
   overriding
   procedure init(self : in out i8080) is
   begin
      self.addr := 0;
      self.temp_addr := 0;
      self.a   := 0;
      self.b   := 0;
      self.c   := 0;
      self.d   := 0;
      self.e   := 0;
      self.h   := 0;
      self.l   := 0;
      self.sp  := 0;
      self.pc  := 0;
      self.psw.carry     := False;
      self.psw.parity    := False;
      self.psw.aux_carry := False;
      self.psw.zero      := False;
      self.psw.sign      := False;
   end;
   --
   --  Called to get number of registers
   --
   overriding
   function registers(self : in out i8080) return uint32 is
      pragma Unreferenced(self);
   begin
      return reg_id'Pos(reg_id'Last) + 1;
   end;
   --
   --  Called to get variant name
   --
--   overriding
--   function variant(self : in out i8080; v : natural) return String is
--   begin
--      return variants_i8080'Image(self.variant);
--   end;
   --
   --  Called to get current variant index
   --
   overriding
   function variant(self : in out i8080) return Natural is
   begin
    return variants_i8080'pos(self.cpu_model);
   end;
   --
   --  Called to set variant
   --
   overriding
   procedure variant(self : in out i8080; v : natural) is
   begin
      self.cpu_model := variants_i8080'Val(v);
   end;
   --
   --  ----------------------------------------------------------------------
   --  Simulator data
   --
   --  Called to set a memory value
   --
   overriding
   procedure set_mem(self : in out i8080; mem_addr : addr_bus;
                     data : data_bus) is
   begin
      self.mem(word(mem_addr and 16#FFFF#)) := byte(data and 16#FF#);
   end;
   --
   --  Called to read a memory value
   --
   overriding
   function read_mem(self : in out i8080; mem_addr : addr_bus) return
     data_bus is
   begin
      return data_bus(self.mem(word(mem_addr and 16#FFFF#)));
   end;
   --
   --  Called to get register name
   --
   overriding
   function reg_name(self : in out i8080; num : uint32)
                     return String is
      pragma Unreferenced(self);
   begin
      if num <= reg_id'Pos(reg_id'Last) then
         return reg_id'Image(reg_id'Val(num));
      else
         return "*invalid*";
      end if;
   end;
   --
   --  Called to get register value
   --
   overriding
   function read_reg(self : in out i8080; num : uint32)
                     return data_bus is
      reg : reg_id;
   begin
      if num <= reg_id'Pos(reg_id'Last) then
         reg := reg_id'Val(num);
         case reg is
            when reg_a =>
               return data_bus(self.a);
            when reg_psw =>
               return data_bus(psw_to_byte(self.psw));
            when reg_b =>
               return data_bus(self.b);
            when reg_c =>
               return data_bus(self.c);
            when reg_bc =>
               return data_bus(word(self.b)*16#100# + word(self.c));
            when reg_d =>
               return data_bus(self.d);
            when reg_e =>
               return data_bus(self.e);
            when reg_de =>
               return data_bus(word(self.d)*16#100# + word(self.e));
            when reg_h =>
               return data_bus(self.h);
            when reg_l =>
               return data_bus(self.l);
            when reg_hl =>
               return data_bus(word(self.h)*16#100# + word(self.l));
            when reg_sp =>
               return data_bus(self.sp);
            when reg_pc =>
               return data_bus(self.pc);
            when others =>
               return 0;
         end case;
      else
         return 0;
      end if;
   end;
   --
   --  Called to get register value as a string (useful for flag registers)
   --
   overriding
   function read_reg(self : in out i8080; num : uint32)
                     return String is
      reg : reg_id;
   begin
      if num <= reg_id'Pos(reg_id'Last) then
         reg := reg_id'Val(num);
         case reg is
            when reg_a =>
               return toHex(self.a);
            when reg_psw =>
               return (if self.psw.sign then "S" else "-") &
               (if self.psw.zero then "Z" else "-") & "*" &
               (if self.psw.aux_carry then "A" else "-") & "*" &
               (if self.psw.parity then "P" else "-") & "*" &
               (if self.psw.carry then "C" else "-") & "(" &
               (if self.int_enable then "E" else "D") & ")";
            when reg_b =>
               return toHex(self.b);
            when reg_c =>
               return toHex(self.c);
            when reg_bc =>
               return toHex(word(self.b)*16#100# + word(self.c));
            when reg_d =>
               return toHex(self.d);
            when reg_e =>
               return toHex(self.e);
            when reg_de =>
               return toHex(word(self.d)*16#100# + word(self.e));
            when reg_h =>
               return toHex(self.h);
            when reg_l =>
               return toHex(self.l);
            when reg_hl =>
               return toHex(word(self.h)*16#100# + word(self.l));
            when reg_sp =>
               return toHex(self.sp);
            when reg_pc =>
               return toHex(self.pc);
            when others =>
               return "*invalid*";
         end case;
      else
         return "*invalid*";
      end if;
   end;
   --
   --  Called to set register value
   --
   --   overriding
   --   procedure set_reg(self : in out simple; num : uint32;
   --                     data : uint32) is null;
   --
   --  This loads data from a file specified by "name" into the simulator memory.
   --  Currently, only Intel Hex format is supported.
   --
   overriding
   procedure load(self : in out i8080; name : String) is
      inp   : Ada.Text_IO.File_Type;
      line  : Ada.Strings.Unbounded.Unbounded_String;
      count : byte;
      addr  : word;
      rec   : byte;
      data  : page;
      valid : Boolean;
   begin
      Ada.Text_IO.Open(inp, Ada.Text_IO.In_File, name);
      while not Ada.Text_IO.End_Of_File(inp) loop
         Ada.Text_IO.Unbounded_IO.Get_Line(inp, line);
         IntelHex(Ada.Strings.Unbounded.To_String(line), count, addr, rec, data,
                  valid);
         exit when rec = 1;  --  End of file record type
         if rec = 0 and valid then  --  Process a data record
            for i in 0 .. count - 1 loop
               self.memory(addr + word(i), data(Integer(i)), ADDR_DATA);
            end loop;
         else
            Ada.Text_IO.Put_Line("Ignoring record: " & Ada.Strings.Unbounded.To_String(line));
         end if;
      end loop;
      Ada.Text_IO.Close(inp);
   exception
      when Ada.Text_IO.Name_Error =>
         Ada.Text_IO.Put_Line("Error in file name: " & name);
      when others =>
         Ada.Text_IO.Put_Line("Error occured processing " & name);
         Ada.Text_IO.Close(inp);
   end;
   --
   --  Called to check if the CPU is halted
   --
   overriding
   function halted(self : in out i8080) return Boolean is
   begin
      return self.cpu_halt;
   end;
   --
   --  This clears the halted flag allowing processing to continue.
   --
   overriding
   procedure continue_proc(self : in out i8080) is
   begin
      self.cpu_halt := False;
   end;
   --
   --  Interrupt status.  Returns simulator dependent status of interrupts
   --
   overriding
   function intStatus(self : in out i8080) return int32 is
   begin
      if self.int_enable then
         return 1;
      else
         return 0;
      end if;
   end;
   --
   --  Input/Output debugging
   --
   overriding
   function lastOutAddr(self : in out i8080) return addr_bus is
   begin
      return self.last_out_addr;
   end;
   --
   overriding
   function lastOutData(self : in out i8080) return data_bus is
   begin
      return self.last_out_data;
   end;
   --
   overriding
   procedure overrideIn(self : in out i8080; addr : in addr_bus; data : in data_bus) is
   begin
      self.in_override  := True;
      self.in_over_addr := addr;
      self.in_over_data := data;
   end;
   --
   --  Set and clear breakpoints.  The implementation is up to the specific simulator.
   --
   procedure setBreak(self : in out i8080; addr : addr_bus) is
   begin
      self.break_enable := True;
      self.break_point  := word(addr and 16#FFFF#);
   end;
   --
   procedure clearBreak(self : in out i8080; addr : addr_bus) is
   begin
      self.break_enable := False;
   end;
   --
   --  Unimplemented instruction response
   --
   --  Right now just print a message for unrecognized opcodes.
   --  At some point, may want to do something different here.
   --
   procedure unimplemented(self : in out i8080; addr : word; data : byte) is
   begin
      Ada.Text_IO.Put_Line("Illegal instruction at " & ToHex(addr) &
         " code " & ToHex(data));
   end;
--  --------------------------------------------------------------------
--
--  Code for the instruction processing.
--
--  Implementation matrix
--   \ 00 01 02 03 04 05 06 07 08 09 0A 0B 0C 0D 0E 0F
--  00  V  V  V  V  V  V  V  V  *  V  V  V  V  V  V  V
--  10  *  V  V  V  V  V  V  V  *  V  V  V  V  V  V  V
--  20  *  V  V  V  V  V  V  V  *  V  V  V  V  V  V  V
--  30  *  V  V  V  V  V  V  V  *  V  V  V  V  V  V  V
--  40  V  V  V  V  V  V  V  V  V  V  V  V  V  V  V  V
--  50  V  V  V  V  V  V  V  V  V  V  V  V  V  V  V  V
--  60  V  V  V  V  V  V  V  V  V  V  V  V  V  V  V  V
--  70  V  V  V  V  V  V  V  V  V  V  V  V  V  V  V  V
--  80  V  V  V  V  V  V  V  V  V  V  V  V  V  V  V  V
--  90  V  V  V  V  V  V  V  V  V  V  V  V  V  V  V  V
--  A0  V  V  V  V  V  V  V  V  V  V  V  V  V  V  V  V
--  B0  V  V  V  V  V  V  V  V  V  V  V  V  V  V  V  V
--  C0  V  V  V  V  V  V  V  V  V  V  V  *  V  V  V  V
--  D0  V  V  V  V  V  V  V  V  V  *  V  V  V  *  V  V
--  E0  V  V  V  V  V  V  V  V  V  V  V  V  V  *  V  V
--  F0  V  V  V  V  V  V  V  V  V  V  V  V  V  *  V  V
--
--  * represents alternate opcodes that should not be used.
--  X represents opcodes implemented.
--  V represents opcodes implemented and tested.
--  . or blank represent opcodes not yet implemented.
   procedure decode(self : in out i8080) is
      inst    : byte;
      op_inst : opcode;
      reg1    : reg8_index;
      reg2    : reg8_index;
      reg16   : reg16_index;
      temp_addr : word;
      temp16  : word;
      temp8   : byte;
   begin
      self.intr := False;  --  Currently interrupts are not implemented
      --
      --  Check for breakpoint
      --
      if self.break_enable then
         if self.break_point = self.pc then
            self.cpu_halt := True;
            if (word(self.trace) and 1) = 1 then
               Ada.Text_IO.Put_Line("TRACE: Breakpoint at " & toHex(self.pc));
            end if;
         end if;
      end if;
      inst := self.get_next;
      op_inst := byte_to_op(inst);
      if (word(self.trace) and 1) = 1 then
         Ada.Text_IO.Put_Line("TRACE: Address: " & toHex(self.pc - 1) & " instruction " &
                           toHex(inst) & " (" & opcode'Image(op_inst) & ")");
      end if;
      --
      --  Do instruction processing
      --
      --  Note that 63 of the 256 instruction codes are occupied by various MOV
      --  instructions.  The MOV M,M instruction is illegal and that code is used
      --  for the HLT instruction, hence the "inst /= 16#76#" test below.
      --
      if ((inst and 16#C0#) = 16#40#) and (inst /= 16#76#) then  --  An assortment of move instructions
         reg1 := inst and 16#07#;
         reg2 := (inst/8) and 16#07#;
         self.reg8(reg2, self.reg8(reg1));
      else
         case inst is
            when 0 =>  --  NOP (No operation)
               null;
            when 16#01# |16#11# | 16#21# | 16#31# =>  --  LXI r (Load register pair)
               temp16 := word(self.get_next);
               temp16 := temp16 + word(self.get_next)*16#100#;
               self.reg16(reg16_index((inst and 16#30#)/16#10#), temp16, 0);
            when 16#02# | 16#12# =>  --  STAX B/D (Store accumulator at address)
               if inst = 16#02# then  --  STAX B
                  temp_addr := word(self.b)*16#100# + word(self.c);
               else
                  temp_addr := word(self.d)*16#100# + word(self.e);
               end if;
               self.memory(temp_addr, self.a, ADDR_DATA);
            when 16#03# | 16#13# | 16#23# | 16#33# =>  --  INX r (increment double)
               reg16 := reg16_index((inst/16#10#) and 3);
               self.mod16(reg16, 1);
            when 16#04# |16#14# | 16#24# | 16#34# | 16#0C#| 16#1C# |
                 16#2C# | 16#3C# =>  --  INR r (Increment register)
               reg1 := (inst/8) and 7;
               self.mod8(reg1, 1);
            when 16#05# | 16#15# | 16#25# | 16#35# | 16#0D# | 16#1D# |
                 16#2D# | 16#3D# =>  --  DCR r (Decrement register)
               reg1 := (inst/8) and 7;
               self.mod8(reg1, -1);
            when 16#06# | 16#0E# | 16#16# | 16#1E# | 16#26# | 16#2E# |
                 16#36# | 16#3E# =>  --  MVI r (Move immediate to register)
               temp8 := self.get_next;
               self.reg8((inst and 16#38#)/16#08#, temp8);
            when 16#07# =>  --  RLC (Rotate accumulator left)
               temp16 := word(self.a)*2;
               if temp16 > 16#FF# then
                  self.psw.carry := True;
                  temp16 := temp16 + 1;
               else
                  self.psw.carry := False;
               end if;
               self.a := byte(temp16 and 16#FF#);
            when 16#09# | 16#19# | 16#29# | 16#39# =>  --  DAD r (double add)
               reg16 := reg16_index((inst/16#10#) and 3);
               temp16 := self.dad(self.reg16(reg16_index(2), 0), self.reg16(reg16, 0));
               self.reg16(reg16_index(2), temp16, 0);
            when 16#0A# | 16#1A# =>  --  LDAX B/D (Load accumulator from address)
               if inst = 16#0A# then  --  LDAX B
                  temp_addr := word(self.b)*16#100# + word(self.c);
               else  --  LDAX D
                  temp_addr := word(self.d)*16#100# + word(self.e);
               end if;
               self.a := self.memory(temp_addr, ADDR_DATA);
            when 16#0B# | 16#1B# | 16#2B# | 16#3B# =>  --  DCX r (decrement double)
               reg16 := reg16_index((inst/16#10#) and 3);
               self.mod16(reg16, -1);
            when 16#0F# =>  --  RRC (Rotate accumulator right)
               if (self.a and 16#01#) = 1 then
                  self.psw.carry := True;
               else
                  self.psw.carry := False;
               end if;
               self.a := self.a/2;
               if self.psw.carry then
                  self.a := self.a + 16#80#;
               end if;
            when 16#17# =>  --  RAL (Rotate left through carry)
               temp16 := word(self.a)*2;
               if self.psw.carry then
                  temp16 := temp16 + 1;
               end if;
               if temp16 > 16#FF# then
                  self.psw.carry := True;
               else
                  self.psw.carry := False;
               end if;
               self.a := byte(temp16 and 16#FF#);
            when 16#1F# =>  --  RAR (Rotate right through carry)
               temp16 := word(self.a);
               if self.psw.carry then
                  temp16 := temp16 + 16#100#;
               end if;
               if (temp16 and 16#01#) = 1 then
                  self.psw.carry := True;
               else
                  self.psw.carry := False;
               end if;
               self.a := byte(temp16/2);
            when 16#20# =>  --  RIM (Read interrupt mask, 8085 only)
               --
               --  This will need to be updated once interrupts are
               --  implemented.  It will also need to be updated should
               --  the serial input ever be implemented.  Right now, all
               --  it does is return the status of the interrupt enable
               --  flag.
               --
               --  Note that for the Z80, this is a JR NZ,d instruction
               --
               if self.cpu_model = var_8085 then
                  if self.int_enable then
                     self.a := 16#08#;
                  else
                     self.a := 16#00#;
                  end if;
               else
                 self.unimplemented(self.pc, inst);
               end if;
            when 16#22# =>  --  SHLD addr (Store HL direct)
               temp_addr := word(self.get_next);
               temp_addr := temp_addr + word(self.get_next)*16#100#;
               self.memory(temp_addr, self.l, ADDR_DATA);
               temp_addr := temp_addr + 1;
               self.memory(temp_addr, self.h, ADDR_DATA);
            when 16#27# =>  --  DAA (Decimal adjust accumulator)
               temp8 := self.a;
               if ((temp8 and 16#0F#) > 6) or self.psw.aux_carry then
                  if ((temp8 and 16#0F#) + 6) > 16#0F# then
                     self.psw.aux_carry := True;
                  else
                     self.psw.aux_carry := False;
                  end if;
                  temp8 := temp8 + 6;
               end if;
               if ((temp8/16#10# and 16#0F#) > 6) or self.psw.carry then
                  if ((temp8/16#10# and 16#0F#) + 6) > 16#0F# then
                     self.psw.carry := True;
                  else
                     self.psw.carry := False;
                  end if;
                  temp8 := temp8 + 16#60#;
               end if;
               self.a := temp8;
            when 16#2A# =>  --  LHLD addr (Load HL direct)
               temp_addr := word(self.get_next);
               temp_addr := temp_addr + word(self.get_next)*16#100#;
               self.l := self.memory(temp_addr, ADDR_DATA);
               temp_addr := temp_addr + 1;
               self.h := self.memory(temp_addr, ADDR_DATA);
            when 16#2F# =>  --  CMA (Complement accumulator)
               self.a := not self.a;
            when 16#30# =>  --  SIM (Set interrupt mask, 8085 only)
               --
               --  This will need to be updated once interrupts are
               --  implemented.  It will also need to be updated should
               --  the serial input ever be implemented.  Right now,
               --  this instruction does nothing.
               --
               --  Note that for the Z80, this is a JR NC,d instruction
               --
               if self.cpu_model = var_8085 then
                  null;
               else
                  self.unimplemented(self.pc, inst);
               end if;
            when 16#32# =>  --  STA addr (Store accumulator)
               temp_addr := word(self.get_next);
               temp_addr := temp_addr + word(self.get_next)*16#100#;
               self.memory(temp_addr, self.a, ADDR_DATA);
            when 16#37# =>  --  STC (Set carry)
               self.psw.carry := True;
            when 16#3A# =>  --  LDA addr (Load accumulator)
               temp_addr := word(self.get_next);
               temp_addr := temp_addr + word(self.get_next)*16#100#;
               self.a := self.memory(temp_addr, ADDR_DATA);
            when 16#3F# =>  --  CMC (Complement carry)
               self.psw.carry := not self.psw.carry;
            when 16#76# =>  --  HLT (Halt)
               self.cpu_halt := True;
            when 16#80# | 16#81# | 16#82# | 16#83# |16#84# | 16#85# |
                 16#86# | 16#87# =>  -- ADD r (ADD register to accumulator)
               reg1 := inst and 16#07#;
               self.a := self.addf(self.a, self.reg8(reg1), False);
            when 16#88# | 16#89# | 16#8A# | 16#8B# |16#8C# | 16#8D# |
                 16#8E# | 16#8F# =>  -- ADC r (ADD register to accumulator with carry)
               reg1 := inst and 16#07#;
               self.a := self.addf(self.a, self.reg8(reg1), self.psw.carry);
            when 16#90# | 16#91# | 16#92# | 16#93# |16#94# | 16#95# |
                 16#96# | 16#97# =>  -- SUB r (SUB register from accumulator)
               reg1 := inst and 16#07#;
               self.a := self.subf(self.a, self.reg8(reg1), False);
            when 16#98# | 16#99# | 16#9A# | 16#9B# |16#9C# | 16#9D# |
                 16#9E# | 16#9F# =>  -- SBB r (SUB register from accumulator with borrow)
               reg1 := inst and 16#07#;
               self.a := self.subf(self.a, self.reg8(reg1), self.psw.carry);
            when 16#A0# | 16#A1# | 16#A2# | 16#A3# |16#A4# | 16#A5# |
                 16#A6# | 16#A7# =>  -- ANA r (AND accumulator with register)
               reg1 := inst and 16#07#;
               self.a := self.a and self.reg8(reg1);
               self.psw.carry := False;
               self.setf(self.a);
            when 16#A8# | 16#A9# | 16#AA# | 16#AB# |16#AC# | 16#AD# |
                 16#AE# | 16#AF# =>  -- XRA r (XOR accumulator with register)
               reg1 := inst and 16#07#;
               self.a := self.a xor self.reg8(reg1);
               self.psw.carry := False;
               self.setf(self.a);
            when 16#B0# | 16#B1# | 16#B2# | 16#B3# |16#B4# | 16#B5# |
                 16#B6# | 16#B7# =>  -- ORA r (OR accumulator with register)
               reg1 := inst and 16#07#;
               self.a := self.a or self.reg8(reg1);
               self.psw.carry := False;
               self.setf(self.a);
            when 16#B8# | 16#B9# | 16#BA# | 16#BB# |16#BC# | 16#BD# |
                 16#BE# | 16#BF# =>  -- CMP r (CMP register with accumulator)
               reg1 := inst and 16#07#;
               --  Only intersted in flags.  Ignore the actual result.
               temp8 := self.subf(self.a, self.reg8(reg1), False);
            when 16#C0# =>  --  RNZ (Return if not zero)
               self.ret(not self.psw.zero);
            when 16#C1# | 16#D1# | 16#E1# | 16#F1# =>  --  POP r (Pop from stack)
               temp16 := word(self.memory(self.sp, ADDR_DATA));
               self.sp := self.sp + 1;
               temp16 := temp16 + word(self.memory(self.sp, ADDR_DATA))*16#100#;
               self.sp := self.sp + 1;
               self.reg16(reg16_index((inst and 16#30#)/16#10#), temp16, 1);
            when 16#C2# =>  -- JNZ (Jump if not zero)
               self.jump(not self.psw.zero);
            when 16#C3# =>  --  JMP (Jump unconditional)
               self.jump(true);
            when 16#C4# =>  --  CNZ (Call if not zero)
               self.call(not self.psw.zero);
            when 16#C5# | 16#D5# | 16#E5# | 16#F5# =>  --  PUSH r (Push to stack)
               temp16 := self.reg16(reg16_index((inst and 16#30#)/16#10#), 1);
               self.sp := self.sp - 1;
               self.memory(self.sp, byte(temp16/16#100#), ADDR_DATA);
               self.sp := self.sp - 1;
               self.memory(self.sp, byte(temp16 and 16#FF#), ADDR_DATA);
            when 16#C6# =>  --  ADI (ADD immediate with accumulator)
               reg1 := inst and 16#07#;
               self.a := self.addf(self.a, self.get_next, False);
            when 16#C7# | 16#CF# | 16#D7# | 16#DF# | 16#E7# | 16#EF# |
                 16#F7# | 16#FF# =>  --  RST n (Restart)
               temp8 := (inst/16#8#) and 7;
               temp16 := self.pc;
               self.sp := self.sp - 1;
               self.memory(self.sp, byte(temp16/16#100#), ADDR_DATA);
               self.sp := self.sp - 1;
               self.memory(self.sp, byte(temp16 and 16#FF#), ADDR_DATA);
               self.pc := word(temp8*16#08#);
            when 16#C8# =>  --  RZ (Return if zero)
               self.ret(self.psw.zero);
            when 16#C9# =>  --  RET (Return unconditional)
               self.ret(True);
            when 16#CA# =>  -- JZ (Jump if zero)
               self.jump(self.psw.zero);
            when 16#CC# =>  --  CZ (Call if zero)
               self.call(self.psw.zero);
            when 16#CD# =>  --  CALL (Call unconditional)
               self.call(True);
            when 16#CE# =>  --  ACI (ADD immediate with accumulator and carry)
               reg1 := inst and 16#07#;
               self.a := self.addf(self.a, self.get_next, self.psw.carry);
            when 16#D0# =>  --  RNZ (Return if not carry)
               self.ret(not self.psw.carry);
            when 16#D2# =>  --  JNC (Jump if not carry)
               self.jump(not self.psw.carry);
            when 16#D3# =>  --  OUT (Output to port)
               temp8 := self.get_next;
               self.port(temp8, self.a);
               self.last_out_addr := addr_bus(temp8);
               self.last_out_data := data_bus(self.a);
            when 16#D4# =>  --  CNC (Call if not carry)
               self.call(not self.psw.carry);
            when 16#D6# =>  --  SUI (Subtract immediate)
               self.a := self.subf(self.a, self.get_next, False);
            when 16#D8# =>  --  RC (Return if carry)
               self.ret(self.psw.carry);
            when 16#DA# =>  --  JC (Jump if carry)
               self.jump(self.psw.carry);
            when 16#DB# =>  --  IN (Input from port)
               temp8 := self.get_next;
               if self.in_override and (addr_bus(temp8) = self.in_over_addr) then
                  self.a := byte(self.in_over_data and 16#FF#);
               else
                  self.a := self.port(temp8);
               end if;
               self.in_override := False;
            when 16#DC# =>  --  CC (Call if carry)
               self.call(self.psw.carry);
            when 16#DE# =>  --  SUI (Subtract immediate)
               self.a := self.subf(self.a, self.get_next, self.psw.carry);
            when 16#E0# =>  --  RNZ (Return if parity odd (parity flag false))
               self.ret(not self.psw.parity);
            when 16#E2# =>  --  JPO (Jump if parity odd (parity flag false))
               self.jump(not self.psw.parity);
            when 16#E3# =>  --  XTHL (Exchange HL with top of stack)
               temp8 := self.memory(self.sp, ADDR_DATA);
               self.memory(self.sp, self.l, ADDR_DATA);
               self.l := temp8;
               temp8 := self.memory(self.sp + 1, ADDR_DATA);
               self.memory(self.sp + 1, self.h, ADDR_DATA);
               self.h := temp8;
            when 16#E4# =>  --  CPO (Call if parity odd (parity flag false))
               self.call(not self.psw.parity);
            when 16#E6# =>  --  ANI (AND immediate with accumulator)
               self.a := self.a and self.get_next;
               self.psw.carry := False;
               self.setf(self.a);
            when 16#E8# =>  --  RPE (Return if parity even (parity flag true))
               self.ret(self.psw.parity);
            when 16#E9# =>  --  PCHL (Copies HL into PC)
               self.pc := word(self.h)*16#100# + word(self.l);
            when 16#EA# =>  --  JPE (Jump if parity even (parity flag true))
               self.jump(self.psw.parity);
            when 16#EB# =>  -- XCHG (Exchange HL and DE registers)
               temp8 := self.d;
               self.d := self.h;
               self.h := temp8;
               temp8 := self.e;
               self.e := self.l;
               self.l := temp8;
            when 16#EC# =>  --  CPE (Call if parity even (parity flag true))
               self.call(self.psw.parity);
            when 16#EE# =>  --  XRI (Exclusive OR immediate with accumulator)
               self.a := self.a xor self.get_next;
               self.psw.carry := False;
               self.setf(self.a);
            when 16#F0# =>  --  RP (Return if positive (sign flag false))
               self.ret(not self.psw.sign);
            when 16#F2# =>  --  JP (Jump if positive (sign flag false))
               self.jump(not self.psw.sign);
            when 16#F3# | 16#FB# =>  --  DI and EI (disable/enable interrupts)
               self.int_enable := (inst = 16#FB#);
            when 16#F4# =>  --  CP (Call if positive (sign flag false))
               self.call(not self.psw.sign);
            when 16#F6# =>  --  ORI (OR immediate with accumulator)
               self.a := self.a or self.get_next;
               self.psw.carry := False;
               self.setf(self.a);
            when 16#F8# =>  --  RM (Return if minus (sign flag true))
               self.ret(self.psw.sign);
            when 16#F9# =>  --  SPHL (Copies HL into SP)
               self.sp := word(self.h)*16#100# + word(self.l);
            when 16#FA# =>  --  JM (Jump if minus (sign flag true))
               self.jump(self.psw.sign);
            when 16#FC# =>  --  CM (Call if minus (sign flag true))
               self.call(self.psw.sign);
            when 16#FE# =>  -- CPI (Compare immediate)
               temp8 := self.subf(self.a, self.get_next, False);
            when others =>
                self.unimplemented(self.pc, inst);
         end case;
      end if;
   end;
   --
   --  Utility code for instruction decoder
   --
   function get_next(self : in out i8080) return byte is
      t : byte;
   begin
      self.lr_ctl.atype := ADDR_INST;
      if self.intr then
         self.lr_ctl.atype := ADDR_INTR;
         return 0;  -- Currently interrupts are not implemented
      else
         t := self.memory(self.pc, ADDR_INST);
         self.pc := self.pc + 1;
         return t;
      end if;
   end;
   --
   procedure reg8(self : in out i8080; reg : reg8_index; value : byte) is
   begin
      case reg is
         when 0 =>
            self.b := value;
         when 1 =>
            self.c := value;
         when 2 =>
            self.d := value;
         when 3 =>
            self.e := value;
         when 4 =>
            self.h := value;
         when 5 =>
            self.l := value;
         when 6 =>  --  Memory
            self.memory(word(self.h)*16#100# + word(self.l), value, ADDR_DATA);
         when 7 =>
            self.a := value;
         when others =>
            null;
      end case;
   end;
   --
   function reg8(self : in out i8080; reg : reg8_index) return byte is
   begin
      case reg is
         when 0 =>
            return self.b;
         when 1 =>
            return self.c;
         when 2 =>
            return self.d;
         when 3 =>
            return self.e;
         when 4 =>
            return self.h;
         when 5 =>
            return self.l;
         when 6 =>
            return self.memory(word(self.h)*16#100# + word(self.l), ADDR_DATA);
         when 7 =>
            return self.a;
         when others =>
            return 0;
      end case;
   end;
   --
   procedure reg16(self : in out i8080; reg : reg16_index; value : word; v : Natural) is
   begin
      case reg is
         when 0 =>  --  Register pair BC
            self.b := byte(value/16#100#);
            self.c := byte(value and 16#FF#);
         when 1 =>  --  Register pair DE
            self.d := byte(value/16#100#);
            self.e := byte(value and 16#FF#);
         when 2 =>  --  Register pair HL
            self.h := byte(value/16#100#);
            self.l := byte(value and 16#FF#);
         when 3 =>  -- Register pair A and PSW
            if v = 0 then
               self.sp := value;
            elsif v = 1 then
               self.a := byte(value/16#100#);
               self.psw := byte_to_psw(byte(value and 16#FF#));
            end if;
         when others =>
            null;
      end case;
   end;
   --
   function reg16(self : in out i8080; reg : reg16_index; v : Natural) return word is
   begin
      case reg is
         when 0 =>  --  Register pair BC
            return word(self.b)*16#100# + word(self.c);
         when 1 =>  --  Register pair DE
            return word(self.d)*16#100# + word(self.e);
         when 2 =>  --  Register pair HL
            return word(self.h)*16#100# + word(self.l);
         when 3 =>  -- Register pair A and PSW
            if v = 0 then
               return self.sp;
            else
               return word(self.a)*16#100# + word(psw_to_byte(self.psw));
            end if;
         when others =>
            return 0;
      end case;
   end;
   --
   --  Set flags based on value (zero, sign, parity)
   --
   procedure setf(self : in out i8080; value : byte) is
      p : byte := 0;  --  Bit counter
   begin
      self.psw.zero := (value = 0);
      self.psw.sign := ((value and 16#80#) = 16#80#);
      p := p + (if ((value and 16#01#) = 16#01#) then 1 else 0);
      p := p + (if ((value and 16#02#) = 16#02#) then 1 else 0);
      p := p + (if ((value and 16#04#) = 16#04#) then 1 else 0);
      p := p + (if ((value and 16#08#) = 16#08#) then 1 else 0);
      p := p + (if ((value and 16#10#) = 16#10#) then 1 else 0);
      p := p + (if ((value and 16#20#) = 16#20#) then 1 else 0);
      p := p + (if ((value and 16#40#) = 16#40#) then 1 else 0);
      p := p + (if ((value and 16#80#) = 16#80#) then 1 else 0);
      self.psw.parity := not ((p and 16#01#) = 16#01#);  --  True is even parity
   end;
   --
   --  Perform addition and set flags including carry and aux carry
   --
   function addf(self : in out i8080; v1 : byte; v2 : byte; c : Boolean) return byte is
      sum : word;
      temp : byte;
   begin
      sum := word(v1) + word(v2);
      if c then
         sum := sum + 1;
      end if;
      if sum > 16#FF# then
         self.psw.carry := True;
      else
         self.psw.carry := False;
      end if;
      temp := (v1 and 16#0F#) + (v2 and 16#0F#);
      if c then
         temp := temp + 1;
      end if;
      if temp > 16#0F# then
         self.psw.aux_carry := True;
      else
         self.psw.aux_carry := False;
      end if;
      self.setf(byte(sum and 16#FF#));
      return byte(sum and 16#FF#);
   end;
   --
   --  Perform subtraction and set flags including carry and aux carry
   --
   function subf(self : in out i8080; v1 : byte; v2 : byte; c : Boolean) return byte is
      diff : word;
      temp : byte;
   begin
      diff := word(v1) - word(v2);
      if c then
         diff := diff - 1;
      end if;
      if diff > 16#FF# then
         self.psw.carry := True;
      else
         self.psw.carry := False;
      end if;
      temp := (v1 and 16#0F#) - (v2 and 16#0F#);
      if c then
         temp := temp - 1;
      end if;
      if temp > 16#0F# then
         self.psw.aux_carry := True;
      else
         self.psw.aux_carry := False;
      end if;
      self.setf(byte(diff and 16#FF#));
      return byte(diff and 16#FF#);
   end;
   --
   --  Modify a single 8 bit value.  This is used for both incrememnt and decrement.
   --  Flags are affected.
   --
   procedure mod8(self  : in out i8080; reg : reg8_index; dir : Integer) is
      value : byte;
   begin
      case reg is
         when 0 =>
            value := self.b;
         when 1 =>
            value := self.c;
         when 2 =>
            value := self.d;
         when 3 =>
            value := self.e;
         when 4 =>
            value := self.h;
         when 5 =>
            value := self.l;
         when 6 =>
            value := self.memory(word(self.h)*16#100# + word(self.l), ADDR_DATA);
         when 7 =>
            value := self.a;
         when others =>
            value := 0;
      end case;
      if dir < 0 then
         if (value and 16#0F#) - 1 > 16#0F# then
            self.psw.aux_carry := True;
         else
            self.psw.aux_carry := False;
         end if;
         value := value - 1;
      else
         if (value and 16#0F#) + 1 > 16#0F# then
            self.psw.aux_carry := True;
         else
            self.psw.aux_carry := False;
         end if;
         value := value + 1;
      end if;
      self.setf(value);
      case reg is
         when 0 =>
            self.b := value;
         when 1 =>
            self.c := value;
         when 2 =>
            self.d := value;
         when 3 =>
            self.e := value;
         when 4 =>
            self.h := value;
         when 5 =>
            self.l := value;
         when 6 =>  --  Memory
            self.memory(word(self.h)*16#100# + word(self.l), value, ADDR_DATA);
         when 7 =>
            self.a := value;
         when others =>
            null;
      end case;
   end;
   --
   --  Perform addition of register pairs.  The carry flag is affected
   --
   function dad(self  : in out i8080; v1 : word; v2 : word) return word is
      sum : uint32;
   begin
      sum := uint32(v1) + uint32(v2);
      if (sum and 16#FFFF0000#) /= 0 then
         self.psw.carry := True;
      else
         self.psw.carry := False;
      end if;
      return word(sum and 16#FFFF#);
   end;
   --
   --  Modify a 16 bit register pair.  This is used for both increment and decrement.
   --  No flags are affected.  Dir is positive for increment and negative for
   --  decrement.
   --
   procedure mod16(self  : in out i8080; reg : reg16_index; dir : Integer) is
      value : word;
   begin
      case reg is
         when 0 =>  --  Register pair BC
            value := word(self.b)*16#100# + word(self.c);
         when 1 =>  --  Register pair DE
            value := word(self.d)*16#100# + word(self.e);
         when 2 =>  --  Register pair HL
            value := word(self.h)*16#100# + word(self.l);
         when 3 =>  -- Register pair A and PSW
            value := self.sp;
         when others =>
            value := 0;
      end case;
      if dir < 0 then
         value := value - 1;
      else
         value := value + 1;
      end if;
      case reg is
         when 0 =>  --  Register pair BC
            self.b := byte(value/16#100#);
            self.c := byte(value and 16#FF#);
         when 1 =>  --  Register pair DE
            self.d := byte(value/16#100#);
            self.e := byte(value and 16#FF#);
         when 2 =>  --  Register pair HL
            self.h := byte(value/16#100#);
            self.l := byte(value and 16#FF#);
         when 3 =>  -- Register pair A and PSW
            self.sp := value;
         when others =>
            null;
      end case;
   end;
   --
   --  All memory accesses should be routed through these functions so that they
   --  can do checks for memory-mapped I/O or shared memory.
   --
   procedure memory(self : in out i8080; addr : word; value : byte; mode : addr_type) is
   begin
      --
      --  Set LED register values
      --
      self.lr_addr := addr_bus(addr);
      self.lr_data := data_bus(value);
      self.lr_ctl.atype := mode;
      --
      --  Set memory.  Optionally, checks for memory mapped I/O or shared memory
      --  or other special stuff can be added here.
      --
      self.mem(addr) := value;
   end;
   --
   function memory(self : in out i8080; addr : word; mode : addr_type) return byte is
   begin
      --
      --  Set LED register values
      --
      self.lr_addr := addr_bus(addr);
      self.lr_data := data_bus(self.mem(addr));
      self.lr_ctl.atype := mode;
      --
      --  Read memory.  Optionally, checks for memory mapped I/O or shared memory
      --  or other special stuff can be added here.
      --
      return self.mem(addr);
   end;
   --
   --  Called to attach an I/O device to a simulator at a specific address.  Bus
   --  is simulator dependent as some CPUs have separate I/O and memory space.
   --  For bus:
   --    0 - I/O space
   --    1 - Memory space (currently unimplemented)
   --
   overriding
   procedure attach_io(self : in out i8080; io_dev : io_access;
                       base_addr : addr_bus; bus : bus_type) is
      size : addr_bus := io_dev.all.getSize;
      valid : Boolean := True;
   begin
      if bus = BUS_IO then
         --
         --  Check for port conflicts
         --
         for i in uint8(base_addr) .. uint8(base_addr + size - 1) loop
            if self.io_ports(i) /= null then
               valid := False;
               Ada.Text_IO.Put_Line("Port conflict detected attaching device to port " & toHex(i));
            end if;
            exit when not valid;
         end loop;
         if valid then
            for i in uint8(base_addr) .. uint8(base_addr + size - 1) loop
               self.io_ports(i) := io_dev;
               Ada.Text_IO.Put_Line("Attaching " & io_dev.name & " to I/O port " & toHex(i));
            end loop;
            io_dev.setBase(base_addr);
         end if;
      elsif bus = BUS_MEMORY then
         Ada.Text_IO.Put_Line("Memory mapped I/O not yet implemented");
      else
         Ada.Text_IO.Put_Line("Unknown I/O bus type");
      end if;
   end;
   --
   --  Handle I/O port accesses
   --
   procedure port(self : in out i8080; addr : byte; value : byte) is
   begin
      if self.io_ports(addr) /= null then
         self.io_ports(addr).all.write(addr_bus(addr), data_bus(value));
         if (word(self.trace) and 2) = 2 then
            Ada.Text_IO.Put_Line("Output " & toHex(value) & " to port " & toHex(addr));
         end if;
      else
         Ada.Text_IO.Put_Line("Output " & toHex(value) & " to unassigned port " & toHex(addr));
      end if;
   end;
   --
   function port(self : in out i8080; addr : byte) return byte is
   begin
      if self.io_ports(addr) /= null then
         if (word(self.trace) and 2) = 2 then
            Ada.Text_IO.Put_Line("Input from port " & toHex(addr));
         end if;
         return byte(self.io_ports(addr).all.read(addr_bus(addr)) and 16#FF#);
      end if;
      Ada.Text_IO.Put_Line("Input from unassigned port " & toHex(addr));
      return addr;
   end;
   --
   --  Common code for Jump, Call, and Return
   --
   procedure jump(self : in out i8080; go : Boolean) is
      temp_pc : word;
   begin
      if go then
         temp_pc := word(self.get_next);
         temp_pc := temp_pc + word(self.get_next)*16#100#;
         self.pc := temp_pc;
      else
         self.pc := self.pc + 2;
      end if;
   end;
   --
   procedure call(self : in out i8080; go : Boolean) is
      temp_pc : word;
   begin
      if go then
         temp_pc := word(self.get_next);
         temp_pc := temp_pc + word(self.get_next)*16#100#;
         --
         self.sp := self.sp - 1;
         self.memory(self.sp, byte(self.pc/16#100#), ADDR_DATA);
         self.sp := self.sp - 1;
         self.memory(self.sp, byte(self.pc and 16#FF#), ADDR_DATA);
         self.pc := temp_pc;
      else
         self.pc := self.pc + 2;
      end if;
   end;
   --
   procedure ret(self : in out i8080; go : Boolean) is
      temp_pc : word;
   begin
      if go then
         temp_pc := word(self.memory(self.sp, ADDR_DATA));
         self.sp := self.sp + 1;
         temp_pc := temp_pc + word(self.memory(self.sp, ADDR_DATA))*16#100#;
         self.sp := self.sp + 1;
         self.pc := temp_pc;
      end if;
   end;
   --
end BBS.Sim_CPU.i8080;