1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417 | --
-- Author: Brent Seidel
-- Date: 31-Jul-2024
--
-- This file is part of SimCPU.
-- SimCPU is free software: you can redistribute it and/or modify it
-- under the terms of the GNU General Public License as published by the
-- Free Software Foundation, either version 3 of the License, or (at your
-- option) any later version.
--
-- SimCPU is distributed in the hope that it will be useful, but
-- WITHOUT ANY WARRANTY; without even the implied warranty of
-- MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General
-- Public License for more details.
--
-- You should have received a copy of the GNU General Public License along
-- with SimCPU. If not, see <https://www.gnu.org/licenses/>.--
--
with Ada.Unchecked_Conversion;
with Ada.Text_IO;
with Ada.Text_IO.Unbounded_IO;
with Ada.Strings.Unbounded;
with Ada.Exceptions;
with BBS.Sim_CPU.m68000.line_0;
with BBS.Sim_CPU.m68000.line_1;
with BBS.Sim_CPU.m68000.line_2;
with BBS.Sim_CPU.m68000.line_3;
with BBS.Sim_CPU.m68000.line_4;
with BBS.Sim_CPU.m68000.line_5;
with BBS.Sim_CPU.m68000.line_6;
with BBS.Sim_CPU.m68000.line_7;
with BBS.Sim_CPU.m68000.line_8;
with BBS.Sim_CPU.m68000.line_9;
--with BBS.Sim_CPU.m68000.line_a;
with BBS.Sim_CPU.m68000.line_b;
with BBS.Sim_CPU.m68000.line_c;
with BBS.Sim_CPU.m68000.line_d;
with BBS.Sim_CPU.m68000.line_e;
--with BBS.Sim_CPU.m68000.line_f;
with BBS.Sim_CPU.m68000.exceptions;
package body BBS.Sim_CPU.m68000 is
--
function psw_to_word is new Ada.Unchecked_Conversion(source => status_word,
target => word);
--
-- ----------------------------------------------------------------------
-- Simulator control
--
-- Called first to initialize the simulator
--
overriding
procedure init(self : in out m68000) is
begin
self.d0 := 0;
self.d1 := 0;
self.d2 := 0;
self.d3 := 0;
self.d4 := 0;
self.d5 := 0;
self.d6 := 0;
self.d7 := 0;
self.a0 := 0;
self.a1 := 0;
self.a2 := 0;
self.a3 := 0;
self.a4 := 0;
self.a5 := 0;
self.a6 := 0;
self.usp := 0;
self.ssp := 0;
self.pc := 0;
self.psw.carry := False;
self.psw.overflow := False;
self.psw.zero := False;
self.psw.negative := False;
self.psw.extend := False;
self.psw.unused0 := False;
self.psw.unused1 := False;
self.psw.unused2 := False;
self.psw.mask := 7;
self.psw.unused3 := False;
self.psw.unused4 := False;
self.psw.super := True;
self.psw.trace0 := False;
self.psw.trace1 := False;
self.cpu_halt := False;
end;
--
-- Called once when Start/Stop switch is moved to start position
--
overriding
procedure start(self : in out m68000) is
begin
self.pc := self.addr;
self.cpu_halt := False;
self.lr_ctl.mode := PROC_SUP;
end;
--
-- Called to start simulator execution at a specific address.
--
overriding
procedure start(self : in out m68000; addr : addr_bus) is
begin
self.addr := addr;
self.start;
end;
--
-- Called once per frame when start/stop is in the start position and run/pause
-- is in the run position.
--
overriding
procedure run(self : in out m68000) is
begin
if not self.halted then
self.decode;
end if;
end;
--
-- Called once when the Deposit switch is moved to the Deposit position.
--
overriding
procedure deposit(self : in out m68000) is
begin
if self.sr_ctl.addr then
self.addr := addr_bus(self.sr_ad);
else
self.mem(self.addr) := byte(self.sr_ad and 16#FF#);
self.addr := self.addr + 1;
end if;
self.lr_addr := addr_bus(self.addr);
self.lr_data := data_bus(self.mem(self.addr));
end;
--
-- Called once when the Examine switch is moved to the Examine position.
--
overriding
procedure examine(self : in out m68000) is
begin
self.lr_addr := addr_bus(self.addr);
self.lr_data := data_bus(self.mem(self.addr));
self.addr := self.addr + 1;
end;
--
-- ----------------------------------------------------------------------
-- Simulator information
--
-- Called to get number of registers
--
overriding
function registers(self : in out m68000) return uint32 is
pragma Unreferenced(self);
begin
return reg_id'Pos(reg_id'Last) + 1;
end;
--
-- Called to get current variant index
--
overriding
function variant(self : in out m68000) return Natural is
begin
return variants_m68000'pos(self.cpu_model);
end;
--
-- Called to set variant
--
overriding
procedure variant(self : in out m68000; v : natural) is
begin
self.cpu_model := variants_m68000'Val(v);
end;
--
-- ----------------------------------------------------------------------
-- Simulator data
--
-- Called to set a memory value
--
overriding
procedure set_mem(self : in out m68000; mem_addr : addr_bus;
data : data_bus) is
begin
self.mem(mem_addr) := byte(data and 16#FF#);
end;
--
-- Called to read a memory value
--
overriding
function read_mem(self : in out m68000; mem_addr : addr_bus) return
data_bus is
begin
return data_bus(self.mem(mem_addr));
end;
--
-- Called to get register name
--
overriding
function reg_name(self : in out m68000; num : uint32)
return String is
pragma Unreferenced(self);
begin
if num <= reg_id'Pos(reg_id'Last) then
return reg_id'Image(reg_id'Val(num));
else
return "*invalid*";
end if;
end;
--
-- Called to get register value
--
overriding
function read_reg(self : in out m68000; num : uint32)
return data_bus is
reg : reg_id;
begin
if num <= reg_id'Pos(reg_id'Last) then
reg := reg_id'Val(num);
case reg is
when reg_d0 =>
return data_bus(self.d0);
when reg_d1 =>
return data_bus(self.d1);
when reg_d2 =>
return data_bus(self.d2);
when reg_d3 =>
return data_bus(self.d3);
when reg_d4 =>
return data_bus(self.d4);
when reg_d5 =>
return data_bus(self.d5);
when reg_d6 =>
return data_bus(self.d6);
when reg_d7 =>
return data_bus(self.d7);
when reg_a0 =>
return data_bus(self.a0);
when reg_a1 =>
return data_bus(self.a1);
when reg_a2 =>
return data_bus(self.a2);
when reg_a3 =>
return data_bus(self.a3);
when reg_a4 =>
return data_bus(self.a4);
when reg_a5 =>
return data_bus(self.a5);
when reg_a6 =>
return data_bus(self.a6);
when reg_usp =>
return data_bus(self.usp);
when reg_ssp =>
return data_bus(self.ssp);
when reg_pc =>
return data_bus(self.pc);
when reg_psw =>
return data_bus(psw_to_word(self.psw));
when others =>
return 0;
end case;
else
return 0;
end if;
end;
--
-- Called to get register value as a string (useful for flag registers)
--
overriding
function read_reg(self : in out m68000; num : uint32)
return String is
reg : reg_id;
begin
if num <= reg_id'Pos(reg_id'Last) then
reg := reg_id'Val(num);
case reg is
when reg_d0 =>
return toHex(self.d0);
when reg_d1 =>
return toHex(self.d1);
when reg_d2 =>
return toHex(self.d2);
when reg_d3 =>
return toHex(self.d3);
when reg_d4 =>
return toHex(self.d4);
when reg_d5 =>
return toHex(self.d5);
when reg_d6 =>
return toHex(self.d6);
when reg_d7 =>
return toHex(self.d7);
when reg_a0 =>
return toHex(self.a0);
when reg_a1 =>
return toHex(self.a1);
when reg_a2 =>
return toHex(self.a2);
when reg_a3 =>
return toHex(self.a3);
when reg_a4 =>
return toHex(self.a4);
when reg_a5 =>
return toHex(self.a5);
when reg_a6 =>
return toHex(self.a6);
when reg_usp =>
return toHex(self.usp);
when reg_ssp =>
return toHex(self.ssp);
when reg_pc =>
return toHex(self.pc);
when reg_psw =>
return
(if self.psw.trace1 then "T" else "-") &
(if self.psw.trace0 then "t" else "-") &
(if self.psw.super then "S" else "u") &
(if self.psw.unused4 then "*" else "+") &
(if self.psw.unused3 then "*" else "+") &
(interrupt_mask'Image(self.psw.mask)) &
(if self.psw.unused2 then "*" else "+") &
(if self.psw.unused1 then "*" else "+") &
(if self.psw.unused0 then "*" else "+") &
(if self.psw.extend then "X" else "-") &
(if self.psw.negative then "N" else "-") &
(if self.psw.zero then "Z" else "-") &
(if self.psw.overflow then "V" else "-") &
(if self.psw.carry then "C" else "-");
end case;
else
return "*invalid*";
end if;
end;
--
-- Called to set register value
--
-- overriding
-- procedure set_reg(self : in out simple; num : uint32;
-- data : uint32) is null;
--
-- This loads data from a file specified by "name" into the simulator memory.
--
overriding
procedure load(self : in out m68000; name : String) is
inp : Ada.Text_IO.File_Type;
line : Ada.Strings.Unbounded.Unbounded_String;
count : byte;
addr : addr_bus;
rec : byte;
data : page;
valid : Boolean;
begin
Ada.Text_IO.Open(inp, Ada.Text_IO.In_File, name);
while not Ada.Text_IO.End_Of_File(inp) loop
Ada.Text_IO.Unbounded_IO.Get_Line(inp, line);
S_Record(Ada.Strings.Unbounded.To_String(line), count, addr, rec, data,
valid);
if ((rec = 1) or (rec = 2) or (rec = 3)) and valid then -- Process a data record
for i in 0 .. count - 1 loop
self.memory(addr + addr_bus(i), data(Integer(i)));
end loop;
elsif (rec = 7) and valid then
Ada.Text_IO.Put_Line("Starting address (32 bit) is " & toHex(addr));
self.pc := addr;
elsif (rec = 8) and valid then
Ada.Text_IO.Put_Line("Starting address (24 bit) is " & toHex(addr));
self.pc := addr;
elsif (rec = 9) and valid then
Ada.Text_IO.Put_Line("Starting address (16 bit) is " & toHex(addr));
self.pc := addr;
elsif (rec = 0) and valid then
Ada.Text_IO.Put("Header: ");
for i in 0 .. count - 1 loop
Ada.Text_IO.Put("" & Character'Val(data(Integer(i))));
end loop;
Ada.Text_IO.New_line;
else
Ada.Text_IO.Put_Line("Ignoring record: " & Ada.Strings.Unbounded.To_String(line));
end if;
end loop;
Ada.Text_IO.Close(inp);
self.cpu_halt := False;
exception
when Ada.Text_IO.Name_Error =>
Ada.Text_IO.Put_Line("Error in file name: " & name);
when error : others =>
Ada.Text_IO.Put_Line("Error occured processing " & name);
Ada.Text_IO.Put_Line(Ada.Exceptions.Exception_Message(error));
Ada.Text_IO.Put_Line(Ada.Exceptions.Exception_Information(error));
Ada.Text_IO.Put_Line("Input line <" & Ada.Strings.Unbounded.To_String(line) & ">");
Ada.Text_IO.Close(inp);
end;
--
-- Called to check if the CPU is halted
--
overriding
function halted(self : in out m68000) return Boolean is
begin
return self.cpu_halt;
end;
--
-- This clears the halted flag allowing processing to continue.
--
overriding
procedure continue_proc(self : in out m68000) is
begin
self.cpu_halt := False;
end;
--
-- Interrupt status. Returns simulator dependent status of interrupts
--
overriding
function intStatus(self : in out m68000) return int32 is
begin
return int32(self.psw.mask);
end;
--
-- Post a reset exception request
--
overriding
procedure reset(self : in out m68000) is
begin
self.except_pend(BBS.Sim_CPU.m68000.exceptions.ex_0_reset_ssp) := True;
self.check_except := True;
end;
--
-- Enable/disable interrupt processing (ususally for debuggin purposes)
-- Also clears pending interrupts if set to False.
--
overriding
procedure interrupts(self : in out m68000; state : Boolean) is
begin
self.int_enable := state;
if state then
Ada.Text_IO.Put_Line("CPU: Interrupt processing enabled.");
else
Ada.Text_IO.Put_Line("CPU: Interrupt processing disabled.");
for i in 25 .. 31 loop
self.except_pend(byte(i)) := False;
self.except_prio(byte(i)) := 0;
end loop;
for i in 64 .. 255 loop
self.except_pend(byte(i)) := False;
self.except_prio(byte(i)) := 0;
end loop;
end if;
end;
--
-- Post an interrupt exception
--
overriding
procedure interrupt(self : in out m68000; data : long) is
inter : constant byte := byte(data and 16#FF#);
prio : constant byte := byte(data/16#100# and 16#FF#);
begin
--
-- Allowed interrupt numbers are 25-31 for autovectors and 64-255.
-- Other requests are ignored. They could be turned into 15 for
-- an uninitialied interrupt vector.
--
if self.int_enable then
if (inter >= 25 and inter <= 31) or (inter >= 64 and inter <= 255) then
BBS.Sim_CPU.m68000.exceptions.process_exception(self, inter, prio);
end if;
end if;
end;
--
-- Set and clear breakpoints. The implementation is up to the specific simulator.
--
procedure setBreak(self : in out m68000; addr : addr_bus) is
begin
self.break_enable := True;
self.break_point := addr;
end;
--
procedure clearBreak(self : in out m68000; addr : addr_bus) is
begin
self.break_enable := False;
end;
-- --------------------------------------------------------------------
--
-- Code for the instruction processing.
--
procedure decode(self : in out m68000) is
begin
--
-- Check for odd PC value
--
if (self.pc and 1) = 1 then
Ada.Text_IO.Put_Line("CPU: PC set to odd address " & toHex(self.pc));
Ada.Text_IO.Put_Line(" : Previous PC is " & toHex(self.inst_pc));
self.cpu_halt := True;
return;
end if;
--
-- Check for breakpoint
--
if self.break_enable then
if self.break_point = self.pc then
self.cpu_halt := True;
if (word(self.trace) and 1) = 1 then
Ada.Text_IO.Put_Line("TRACE: Breakpoint at " & toHex(self.pc));
end if;
return;
end if;
end if;
self.inst_pc := self.pc;
if (word(self.trace) and 1) = 1 then
Ada.Text_IO.Put("TRACE: Address: " & toHex(self.pc));
end if;
instr := self.get_next;
if (word(self.trace) and 1) = 1 then
Ada.Text_IO.Put_Line(", instruction " & toHex(instr));
end if;
case instr1.pre is
when 16#0# => -- Group 0 - Bit manipulation/MOVEP/Immediate
BBS.Sim_CPU.m68000.line_0.decode_0(self);
when 16#1# => -- Group 1 - Move byte
BBS.Sim_CPU.m68000.line_1.decode_1(self);
when 16#2# => -- Group 2 - Move long
BBS.Sim_CPU.m68000.line_2.decode_2(self);
when 16#3# => -- Group 3 - Move word
BBS.Sim_CPU.m68000.line_3.decode_3(self);
when 16#4# => -- Group 4 - Miscellaneous
BBS.Sim_CPU.m68000.line_4.decode_4(self);
when 16#5# => -- Group 5 - ADDQ/SUBQ/Scc/DBcc/TRAPcc
BBS.Sim_CPU.m68000.line_5.decode_5(self);
when 16#6# => -- Group 6 - Bcc/BSR/BRA
BBS.Sim_CPU.m68000.line_6.decode_6(self);
when 16#7# => -- Group 7 - MOVEQ
BBS.Sim_CPU.m68000.line_7.decode_7(self);
when 16#8# => -- Group 8 - OR/DIV/SBCD
BBS.Sim_CPU.m68000.line_8.decode_8(self);
when 16#9# => -- Group 9 - SUB/SUBX
BBS.Sim_CPU.m68000.line_9.decode_9(self);
when 16#a# => -- Group 10 - Unassigned/Reserved (A-Line)
BBS.Sim_CPU.m68000.exceptions.process_exception(self,
BBS.Sim_CPU.m68000.exceptions.ex_10_line_1010);
when 16#b# => -- Group 11 - CMP/EOR
BBS.Sim_CPU.m68000.line_b.decode_b(self);
when 16#c# => -- Group 12 - AND/MUL/ABCD/EXG
BBS.Sim_CPU.m68000.line_c.decode_c(self);
when 16#d# => -- Group 13 - ADD/ADDX
BBS.Sim_CPU.m68000.line_d.decode_d(self);
when 16#e# => -- Group 14 - Shift/Rotate/Bit Field
BBS.Sim_CPU.m68000.line_e.decode_e(self);
when 16#f# => -- Group 15 - Unassigned/Reserved (F-Line) (table lookup and interpolation)
BBS.Sim_CPU.m68000.exceptions.process_exception(self,
BBS.Sim_CPU.m68000.exceptions.ex_11_line_1111);
end case;
--
-- Check for exceptions. Note that trace exceptions will need to
-- be added here.
--
if self.check_except then
BBS.Sim_CPU.m68000.exceptions.perform_exception(self);
end if;
end;
--
-- Utility code for instruction decoder
--
-- Get next instruction
--
function get_next(self : in out m68000) return word is
t : word;
begin
self.lr_ctl.atype := ADDR_INST;
if self.psw.super then
self.lr_ctl.mode := PROC_SUP;
else
self.lr_ctl.mode := PROC_USER;
end if;
t := self.memory(self.pc);
self.pc := self.pc + 2;
return t;
end;
--
-- Get extension word
--
function get_ext(self : in out m68000) return word is
t : word;
begin
self.lr_ctl.atype := ADDR_INST;
t := self.memory(self.pc);
self.pc := self.pc + 2;
return t;
end;
--
-- Sign extension
--
function sign_extend(d : byte) return long is
begin
if (d and 16#80#) = 16#80# then
return long(d) or 16#FFFF_FF00#;
else
return long(d);
end if;
end;
--
function sign_extend(d : word) return long is
begin
if (d and 16#8000#) = 16#8000# then
return long(d) or 16#FFFF_0000#;
else
return long(d);
end if;
end;
--
-- Register opertions
--
function get_regb(self : in out m68000; data_addr : reg_type; reg_index : reg_num) return byte is
begin
if data_addr = data then
case reg_index is
when 0 =>
return byte(self.d0 and 16#ff#);
when 1 =>
return byte(self.d1 and 16#ff#);
when 2 =>
return byte(self.d2 and 16#ff#);
when 3 =>
return byte(self.d3 and 16#ff#);
when 4 =>
return byte(self.d4 and 16#ff#);
when 5 =>
return byte(self.d5 and 16#ff#);
when 6 =>
return byte(self.d6 and 16#ff#);
when 7 =>
return byte(self.d7 and 16#ff#);
end case;
else
case reg_index is
when 0 =>
return byte(self.a0 and 16#ff#);
when 1 =>
return byte(self.a1 and 16#ff#);
when 2 =>
return byte(self.a2 and 16#ff#);
when 3 =>
return byte(self.a3 and 16#ff#);
when 4 =>
return byte(self.a4 and 16#ff#);
when 5 =>
return byte(self.a5 and 16#ff#);
when 6 =>
return byte(self.a6 and 16#ff#);
when 7 =>
if self.psw.super then
return byte(self.ssp and 16#ff#);
else
return byte(self.usp and 16#ff#);
end if;
end case;
end if;
end;
function get_regw(self : in out m68000; data_addr : reg_type; reg_index : reg_num) return word is
begin
if data_addr = data then
case reg_index is
when 0 =>
return word(self.d0 and 16#ffff#);
when 1 =>
return word(self.d1 and 16#ffff#);
when 2 =>
return word(self.d2 and 16#ffff#);
when 3 =>
return word(self.d3 and 16#ffff#);
when 4 =>
return word(self.d4 and 16#ffff#);
when 5 =>
return word(self.d5 and 16#ffff#);
when 6 =>
return word(self.d6 and 16#ffff#);
when 7 =>
return word(self.d7 and 16#ffff#);
end case;
else
case reg_index is
when 0 =>
return word(self.a0 and 16#ffff#);
when 1 =>
return word(self.a1 and 16#ffff#);
when 2 =>
return word(self.a2 and 16#ffff#);
when 3 =>
return word(self.a3 and 16#ffff#);
when 4 =>
return word(self.a4 and 16#ffff#);
when 5 =>
return word(self.a5 and 16#ffff#);
when 6 =>
return word(self.a6 and 16#ffff#);
when 7 =>
if self.psw.super then
return word(self.ssp and 16#ffff#);
else
return word(self.usp and 16#ffff#);
end if;
end case;
end if;
end;
function get_regl(self : in out m68000; data_addr : reg_type; reg_index : reg_num) return long is
begin
if data_addr = data then
case reg_index is
when 0 =>
return self.d0;
when 1 =>
return self.d1;
when 2 =>
return self.d2;
when 3 =>
return self.d3;
when 4 =>
return self.d4;
when 5 =>
return self.d5;
when 6 =>
return self.d6;
when 7 =>
return self.d7;
end case;
else
case reg_index is
when 0 =>
return self.a0;
when 1 =>
return self.a1;
when 2 =>
return self.a2;
when 3 =>
return self.a3;
when 4 =>
return self.a4;
when 5 =>
return self.a5;
when 6 =>
return self.a6;
when 7 =>
if self.psw.super then
return self.ssp;
else
return self.usp;
end if;
end case;
end if;
end;
--
procedure set_regb(self : in out m68000; data_addr : reg_type; reg_index : reg_num; value : byte) is
l : constant long := long(value);
begin
if data_addr = data then
case reg_index is
when 0 =>
self.d0 := (self.d0 and 16#FFFF_FF00#) or l;
when 1 =>
self.d1 := (self.d1 and 16#FFFF_FF00#) or l;
when 2 =>
self.d2 := (self.d2 and 16#FFFF_FF00#) or l;
when 3 =>
self.d3 := (self.d3 and 16#FFFF_FF00#) or l;
when 4 =>
self.d4 := (self.d4 and 16#FFFF_FF00#) or l;
when 5 =>
self.d5 := (self.d5 and 16#FFFF_FF00#) or l;
when 6 =>
self.d6 := (self.d6 and 16#FFFF_FF00#) or l;
when 7 =>
self.d7 := (self.d7 and 16#FFFF_FF00#) or l;
end case;
else
Ada.Text_IO.Put_Line("Byte write to address register not allowed.");
end if;
end;
procedure set_regw(self : in out m68000; data_addr : reg_type; reg_index : reg_num; value : word) is
l : constant long := long(value);
begin
if data_addr = data then
case reg_index is
when 0 =>
self.d0 := (self.d0 and 16#FFFF_0000#) or l;
when 1 =>
self.d1 := (self.d1 and 16#FFFF_0000#) or l;
when 2 =>
self.d2 := (self.d2 and 16#FFFF_0000#) or l;
when 3 =>
self.d3 := (self.d3 and 16#FFFF_0000#) or l;
when 4 =>
self.d4 := (self.d4 and 16#FFFF_0000#) or l;
when 5 =>
self.d5 := (self.d5 and 16#FFFF_0000#) or l;
when 6 =>
self.d6 := (self.d6 and 16#FFFF_0000#) or l;
when 7 =>
self.d7 := (self.d7 and 16#FFFF_0000#) or l;
end case;
else
case reg_index is
when 0 =>
self.a0 := (self.a0 and 16#FFFF_0000#) or l;
when 1 =>
self.a1 := (self.a1 and 16#FFFF_0000#) or l;
when 2 =>
self.a2 := (self.a2 and 16#FFFF_0000#) or l;
when 3 =>
self.a3 := (self.a3 and 16#FFFF_0000#) or l;
when 4 =>
self.a4 := (self.a4 and 16#FFFF_0000#) or l;
when 5 =>
self.a5 := (self.a5 and 16#FFFF_0000#) or l;
when 6 =>
self.a6 := (self.a6 and 16#FFFF_0000#) or l;
when 7 =>
if self.psw.super then
self.ssp := (self.ssp and 16#FFFF_0000#) or l;
else
self.usp := (self.usp and 16#FFFF_0000#) or l;
end if;
end case;
end if;
end;
procedure set_regl(self : in out m68000; data_addr : reg_type; reg_index : reg_num; value : long) is
begin
if data_addr = data then
case reg_index is
when 0 =>
self.d0 := value;
when 1 =>
self.d1 := value;
when 2 =>
self.d2 := value;
when 3 =>
self.d3 := value;
when 4 =>
self.d4 := value;
when 5 =>
self.d5 := value;
when 6 =>
self.d6 := value;
when 7 =>
self.d7 := value;
end case;
else
case reg_index is
when 0 =>
self.a0 := value;
when 1 =>
self.a1 := value;
when 2 =>
self.a2 := value;
when 3 =>
self.a3 := value;
when 4 =>
self.a4 := value;
when 5 =>
self.a5 := value;
when 6 =>
self.a6 := value;
when 7 =>
if self.psw.super then
self.ssp := value;
else
self.usp := value;
end if;
end case;
end if;
end;
--
-- Get EA. Decode the register, addressing modes, and extension
-- words to get the effective address. Also does any pre-processing,
-- namely pre-decrement, as appropriate.
--
-- Mode Addressing mode
-- 0 Data register direct
-- 1 Address register direct
-- 2 Address register indirect
-- 3 Address register indirect with post increment
-- 4 Address register indirect with pre decrement
-- 5 Address register indirect with 16 bit displacement
-- 6 Extension word modes
-- 7 Special modes
--
function get_EA(self : in out m68000; reg : reg_num; mode : mode_code;
size : data_size) return operand is
begin
case mode is
when 0 => -- Data register <Dx>
return (reg => reg, mode => mode, size => size, kind => data_register);
when 1 => -- Address register <Ax>
return (reg => reg, mode => mode, size => size, kind => address_register);
when 2 => -- Address register indirect <(Ax)>
return (reg => reg, mode => mode, size => size, kind => memory_address, address => self.get_regl(Address, reg));
when 3 => -- Address register indirect with post increment <(Ax)+>
return (reg => reg, mode => mode, size => size, kind => memory_address, address => self.get_regl(Address, reg));
when 4 => -- Address register indirect with pre decrement <-(Ax)>
case size is
when data_byte =>
if reg = 7 then -- Stack pointer needs to stay even
self.set_regl(Address, reg, self.get_regl(Address, reg) - 2);
else
self.set_regl(Address, reg, self.get_regl(Address, reg) - 1);
end if;
when data_word =>
self.set_regl(Address, reg, self.get_regl(Address, reg) - 2);
when data_long =>
self.set_regl(Address, reg, self.get_regl(Address, reg) - 4);
when data_long_long =>
self.set_regl(Address, reg, self.get_regl(Address, reg) - 8);
end case;
return (reg => reg, mode => mode, size => size, kind => memory_address, address => self.get_regl(Address, reg));
when 5 => -- Address register indirect with displacement <(d16,Ax)> or <d(An)>
ext := self.get_ext; -- Get extension word
return (reg => reg, mode => mode, size => size, kind => memory_address, address =>
self.get_regl(Address, reg) + sign_extend(ext));
when 6 => -- Extension word modes
return self.decode_ext(reg, size);
when 7 => -- Special modes
return self.decode_special(reg, size);
end case;
end;
--
-- Do post-processing, namely post-increment, if needed.
--
procedure post_EA(self : in out m68000; ea : operand) is
begin
if ea.mode = 3 then -- Address register indirect with post increment<(Ax)+>
case ea.size is
when data_byte =>
if ea.reg = 7 then -- Stack pointer needs to stay even
self.set_regl(Address, ea.reg, self.get_regl(Address, ea.reg) + 2);
else
self.set_regl(Address, ea.reg, self.get_regl(Address, ea.reg) + 1);
end if;
when data_word =>
self.set_regl(Address, ea.reg, self.get_regl(Address, ea.reg) + 2);
when data_long =>
self.set_regl(Address, ea.reg, self.get_regl(Address, ea.reg) + 4);
when data_long_long =>
self.set_regl(Address, ea.reg, self.get_regl(Address, ea.reg) + 8);
end case;
end if;
end;
--
-- Decode extension word and return effective address
--
function decode_ext(self : in out m68000; reg : reg_num; size : data_size) return operand is
ea : addr_bus := self.get_regl(Address, reg);
scale : addr_bus := 1;
temp : word;
begin
ext := self.get_ext;
if ext_brief.br_full then
--
-- Full extension word is only supported by CPU32 and M68020 or
-- higher processors.
--
Ada.Text_IO.Put_Line("Full extension word at " & toHex(self.pc - 2) &
" is not supported yet. Instruction at " & toHex(self.inst_pc));
else
--
-- Brief extension word is supported by the full M68000 family.
--
ea := ea + sign_extend(ext_brief.displacement);
--
-- Scale is used only on later processors
--
if ext_brief.word_long then
ea := ea + self.get_regl(ext_brief.reg_mem, ext_brief.reg)*scale;
else
temp := self.get_regw(ext_brief.reg_mem, ext_brief.reg);
ea := ea + sign_extend(temp)*scale;
end if;
return (reg => 0, mode => 0, size => size, kind => memory_address, address => ea);
end if;
return (reg => 0, mode => 0, size => size, kind => value, value => 0);
end;
--
-- Decode group 7 (special addressing modes
-- Note that depending on the mode, this may be an effective address
-- or a value. If <value> is true, then a value is returned in <data>,
-- otherwise an address is returned in <ea>.
--
-- Reg Addressing mode
-- 0 Absolute short address
-- 1 Absolute long address
-- 2 Program counter with displacement
-- 3 Program counter with index
-- 4 Immediate data (byte, word, or long)
-- 5-7 unused in 68000
--
function decode_special(self : in out m68000; reg : reg_num; size : data_size)
return operand is
ea : addr_bus := self.pc;
scale : addr_bus := 1;
ext1 : word;
ext2 : word;
ret_value : long;
begin
case reg is
when 0 => -- Absolute short address
return (reg => 0, mode => 0, size => size, kind => memory_address,
address => sign_extend(self.get_ext));
when 1 => -- Absolute long address
ext1 := self.get_ext;
ext2 := self.get_ext;
return (reg => 0, mode => 0, size => size, kind => memory_address,
address => long(ext1)*16#0001_0000# + long(ext2));
when 2 => -- Program counter with displacement
return (reg => 0, mode => 0, size => size, kind => memory_address,
address => sign_extend(self.get_ext) + self.pc - 2);
when 3 => -- Program counter with index
ext := self.get_ext;
if ext_brief.br_full then
--
-- Full extension word is only supported by CPU32 and M68020 or
-- higher processors.
--
Ada.Text_IO.Put_Line("CPU: Full extension word is not supported yet.");
Ada.Text_IO.Put_Line(" : Instruction " & toHex(instr) & " at " &
toHex(self.inst_pc));
else
--
-- Brief extension word is supported by the full M68000 family.
--
ea := ea + sign_extend(ext_brief.displacement);
--
-- Scale is used only on later processors
--
if ext_brief.word_long then
ea := ea + self.get_regl(ext_brief.reg_mem, ext_brief.reg)*scale;
else
ext1 := self.get_regw(ext_brief.reg_mem, ext_brief.reg);
ea := ea + sign_extend(ext1)*scale;
end if;
return (reg => 0, mode => 0, size => size, kind => memory_address, address => ea);
end if;
when 4 => -- Immediate data (byte, word, or long)
ext1 := self.get_ext;
case size is
when data_byte =>
ret_value := long(ext1 and 16#00FF#);
when data_word =>
ret_value := long(ext1);
when data_long =>
ext2 := self.get_ext;
ret_value := long(ext1)*16#0001_0000# + long(ext2);
when others =>
Ada.Text_IO.Put_Line("Unrecognized immediate data size");
ret_value := 0;
end case;
return (reg => 0, mode => 0, size => size, kind => value, value => ret_value);
when others =>
Ada.Text_IO.Put_Line("CPU: Unrecognized special mode register " & reg_num'Image(reg));
Ada.Text_IO.Put_Line(" : Instruction " & toHex(instr) & " at " &
toHex(self.inst_pc));
end case;
return (reg => 0, mode => 0, size => size, kind => value, value => 0);
end;
--
-- Get and set value at the effective address. Note that some effective
-- addresses cannot be set.
--
function get_ea(self : in out m68000; ea : operand) return long is
b : byte;
w : word;
v : long;
begin
case ea.kind is
when value =>
v := ea.value;
when data_register =>
v := self.get_regl(Data, ea.reg);
when address_register =>
v := self.get_regl(Address, ea.reg);
when memory_address =>
self.lr_ctl.atype := ADDR_DATA;
if ea.size = data_byte then
b := self.memory(ea.address);
v := long(b);
elsif ea.size = data_word then
w := self.memory(ea.address);
v := long(w);
else
v := self.memory(ea.address);
end if;
end case;
case ea.size is
when data_byte =>
return (v and 16#FF#);
when data_word =>
return (v and 16#FFFF#);
when others =>
return v;
end case;
end;
--
procedure set_ea(self : in out m68000; ea : operand; val : long) is
begin
case ea.kind is
when value =>
null;
when data_register =>
case ea.size is
when data_byte =>
self.set_regb(Data, ea.reg, byte(val and 16#FF#));
when data_word =>
self.set_regw(Data, ea.reg, word(val and 16#FFFF#));
when data_long =>
self.set_regl(Data, ea.reg, val);
when others =>
null;
end case;
when address_register =>
case ea.size is
when data_word =>
self.set_regw(Address, ea.reg, word(val and 16#FFFF#));
when data_long =>
self.set_regl(Address, ea.reg, val);
when others =>
null;
end case;
when memory_address =>
self.lr_ctl.atype := ADDR_DATA;
if ea.size = data_byte then
self.memory(ea.address, byte(val and 16#FF#));
elsif ea.size = data_word then
self.memory(ea.address, word(val and 16#FFFF#));
else
self.memory(ea.address, val);
end if;
end case;
end;
--
-- Set flags based on value (zero, sign, parity)
--
procedure setf(self : in out m68000; value : data_bus) is
begin
self.psw.zero := (value = 0);
end;
--
-- All memory accesses should be routed through these functions so that they
-- can do checks for memory-mapped I/O or shared memory.
--
-- Trim the address depending on the CPU model. The 68008 has 20 bits,
-- the 68000 has 24 bits, some others have the full 32 bits. This will
-- change as more models are implemented.
--
function trim_addr(addr : addr_bus; model : variants_m68000) return addr_bus is
begin
if model = var_68000 then
return (addr and 16#00FF_FFFF#);
elsif model = var_68008 then
return (addr and 16#000F_FFFF#);
else
return addr;
end if;
end;
--
-- Set memory.
--
procedure memory(self : in out m68000; addr : addr_bus; value : long) is
begin
--
-- Set LED register values
--
self.lr_addr := addr;
self.lr_data := data_bus(value);
--
-- Set memory. Optionally, checks for memory mapped I/O or shared memory
-- or other special stuff can be added here.
--
if ((self.cpu_model = var_68000) or (self.cpu_model = var_68010)) and lsb(addr) then
Ada.Text_IO.Put_Line("CPU: Long write to odd address " & toHex(addr));
Ada.Text_IO.Put_Line(" : Instruction " & toHex(instr) & " at " &
toHex(self.inst_pc));
BBS.Sim_CPU.m68000.exceptions.process_exception(self,
BBS.Sim_CPU.m68000.exceptions.ex_3_addr_err);
end if;
self.memb(addr, byte(value/16#0100_0000#));
self.memb(addr + 1, byte((value/16#0001_0000#) and 16#FF#));
self.memb(addr + 2, byte((value/16#0000_0100#) and 16#FF#));
self.memb(addr + 3, byte(value and 16#FF#));
end;
--
procedure memory(self : in out m68000; addr : addr_bus; value : word) is
begin
--
-- Set LED register values
--
self.lr_addr := addr;
self.lr_data := data_bus(value);
--
-- Set memory. Optionally, checks for memory mapped I/O or shared memory
-- or other special stuff can be added here.
--
if ((self.cpu_model = var_68000) or (self.cpu_model = var_68010)) and lsb(addr) then
Ada.Text_IO.Put_Line("CPU: Word write to odd address " & toHex(addr));
Ada.Text_IO.Put_Line(" : Instruction " & toHex(instr) & " at " &
toHex(self.inst_pc));
BBS.Sim_CPU.m68000.exceptions.process_exception(self,
BBS.Sim_CPU.m68000.exceptions.ex_3_addr_err);
end if;
self.memb(addr, byte((value/16#0000_0100#) and 16#FF#));
self.memb(addr + 1, byte(value and 16#FF#));
end;
--
procedure memory(self : in out m68000; addr : addr_bus; value : byte) is
begin
--
-- Set LED register values
--
self.lr_addr := addr;
self.lr_data := data_bus(value);
self.memb(addr, value);
end;
--
-- Read memory.
--
function memory(self : in out m68000; addr : addr_bus) return long is
t : data_bus;
begin
if ((self.cpu_model = var_68000) or (self.cpu_model = var_68010)) and lsb(addr) then
Ada.Text_IO.Put_Line("CPU: Long read from odd address " & toHex(addr));
Ada.Text_IO.Put_Line(" : Instruction " & toHex(instr) & " at " &
toHex(self.inst_pc));
BBS.Sim_CPU.m68000.exceptions.process_exception(self,
BBS.Sim_CPU.m68000.exceptions.ex_3_addr_err);
end if;
t := data_bus(self.memb(addr))*16#0100_0000# +
data_bus(self.memb(addr + 1))*16#0001_0000# +
data_bus(self.memb(addr + 2))*16#0000_0100# +
data_bus(self.memb(addr + 3));
--
-- Set LED register values
--
self.lr_addr := addr;
self.lr_data := t;
return long(t);
end;
--
function memory(self : in out m68000; addr : addr_bus) return word is
t : word;
begin
if ((self.cpu_model = var_68000) or (self.cpu_model = var_68010)) and lsb(addr) then
Ada.Text_IO.Put_Line("CPU: Word read from odd address " & toHex(addr));
Ada.Text_IO.Put_Line(" : Instruction " & toHex(instr) & " at " &
toHex(self.inst_pc));
BBS.Sim_CPU.m68000.exceptions.process_exception(self,
BBS.Sim_CPU.m68000.exceptions.ex_3_addr_err);
end if;
t := word(self.memb(addr))*16#0000_0100# +
word(self.memb(addr + 1));
--
-- Set LED register values
--
self.lr_addr := addr;
self.lr_data := data_bus(t);
return t;
end;
--
function memory(self : in out m68000; addr : addr_bus) return byte is
t : byte := self.memb(addr);
begin
--
-- Set LED register values
--
self.lr_addr := addr;
self.lr_data := data_bus(t);
return t;
end;
--
-- Functions to actually access memory, trimming the address as needed
-- for the processor variant or memory size. Also checks for memory
-- mapped I/O. If an MMU gets implemented, the logic should be added
-- here.
--
procedure memb(self : in out m68000; addr : addr_bus; value : byte) is
t_addr : constant addr_bus := trim_addr(addr, self.cpu_model);
begin
--
-- Set memory. Checks for memory mapped I/O. Checks for shared memory
-- or other special stuff can be added here.
--
if self.io_ports.contains(t_addr) then
if (word(self.trace) and 2) = 2 then
Ada.Text_IO.Put_Line("TRACE: Output " & toHex(value) & " to port " & toHex(t_addr));
end if;
self.io_ports(addr).all.write(t_addr, data_bus(value));
else
self.mem(t_addr) := byte(value and 16#FF#);
end if;
end;
function memb(self : in out m68000; addr : addr_bus) return byte is
t_addr : constant addr_bus := trim_addr(addr, self.cpu_model);
begin
--
-- Read memory. Checks for memory mapped I/O. Checks for shared memory,
-- memory management, or other special stuff can be added here.
--
if self.io_ports.contains(t_addr) then
if (word(self.trace) and 2) = 2 then
Ada.Text_IO.Put_Line("TRACE: Input from port " & toHex(addr));
end if;
return byte(self.io_ports(t_addr).all.read(addr_bus(t_addr)) and 16#FF#);
else
return self.mem(t_addr);
end if;
end;
--
-- Push and pop long or word to the user or system stack
--
procedure push(self : in out m68000; stack : Boolean; value : long) is
sp : long;
begin
if stack then
sp := self.ssp;
sp := sp - 4;
self.memory(sp, value);
self.ssp := sp;
else
sp := self.usp;
sp := sp - 4;
self.memory(sp, value);
self.usp := sp;
end if;
end;
--
procedure push(self : in out m68000; stack : Boolean; value : word) is
sp : long;
begin
if stack then
sp := self.ssp;
sp := sp - 2;
self.memory(sp, value);
self.ssp := sp;
else
sp := self.usp;
sp := sp - 2;
self.memory(sp, value);
self.usp := sp;
end if;
end;
--
function pop(self : in out m68000; stack : Boolean) return long is
sp : long;
val : long;
begin
if stack then
sp := self.ssp;
val := self.memory(sp);
sp := sp + 4;
self.ssp := sp;
else
sp := self.usp;
val := self.memory(sp);
sp := sp + 4;
self.usp := sp;
end if;
return val;
end;
--
function pop(self : in out m68000; stack : Boolean) return word is
sp : long;
val : word;
begin
if stack then
sp := self.ssp;
val := self.memory(sp);
sp := sp + 2;
self.ssp := sp;
else
sp := self.usp;
val := self.memory(sp);
sp := sp + 2;
self.usp := sp;
end if;
return val;
end;
--
-- Called to attach an I/O device to a simulator at a specific address.
-- Bus is simulator dependent as some CPUs have separate I/O and
-- memory space, and some don't.
--
overriding
procedure attach_io(self : in out m68000; io_dev : io_access;
base_addr : addr_bus; bus : bus_type) is
size : addr_bus := io_dev.all.getSize;
valid : Boolean := True;
begin
if bus = BUS_IO then
Ada.Text_IO.Put_Line("I/O mapped I/O not used in 68000 family");
elsif bus = BUS_MEMORY then
--
-- Check for port conflicts
--
for i in base_addr .. base_addr + size - 1 loop
if self.io_ports.contains(i) then
valid := False;
Ada.Text_IO.Put_Line("Port conflict detected attching device to port " & toHex(i));
end if;
exit when not valid;
end loop;
--
-- If no conflict, attach the port
--
if valid then
for i in base_addr .. base_addr + size - 1 loop
self.io_ports.include(i, io_dev);
Ada.Text_IO.Put_Line("Attaching " & io_dev.name &
" to memory location " & toHex(i));
end loop;
io_dev.setBase(base_addr);
end if;
else
Ada.Text_IO.Put_Line("Unknown I/O bus type");
end if;
end;
--
end BBS.Sim_CPU.m68000;
|